PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors.

Cancer Research UK Cell Signalling Group, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK. <>
BMC Biology (Impact Factor: 7.43). 02/2004; 2:7. DOI: 10.1186/1741-7007-2-7
Source: PubMed

ABSTRACT Erythropoietin is a multifunctional cytokine which regulates the number of erythrocytes circulating in mammalian blood. This is crucial in order to maintain an appropriate oxygen supply throughout the body. Stimulation of primary human erythroid progenitors (PEPs) with erythropoietin (Epo) leads to the activation of the mitogenic kinases (MEKs and Erks). How this is accomplished mechanistically remained unclear.
Biochemical studies with human cord blood-derived PEPs now show that Ras and the class Ib enzyme of the phosphatidylinositol-3 kinase (PI3K) family, PI3K gamma, are activated in response to minimal Epo concentrations. Surprisingly, three structurally different PI3K inhibitors block Ras, MEK and Erk activation in PEPs by Epo. Furthermore, Erk activation in PEPs is insensitive to the inhibition of Raf kinases but suppressed upon PKC inhibition. In contrast, Erk activation induced by stem cell factor, which activates c-Kit in the same cells, is sensitive to Raf inhibition and insensitive to PI3K and PKC inhibitors.
These unexpected findings contrast with previous results in human primary cells using Epo at supraphysiological concentrations and open new doors to eventually understanding how low Epo concentrations mediate the moderate proliferation of erythroid progenitors under homeostatic blood oxygen levels. They indicate that the basal activation of MEKs and Erks in PEPs by minimal concentrations of Epo does not occur through the classical cascade Shc/Grb2/Sos/Ras/Raf/MEK/Erk. Instead, MEKs and Erks are signal mediators of PI3K, probably the recently described PI3K gamma, through a Raf-independent signaling pathway which requires PKC activity. It is likely that higher concentrations of Epo that are induced by hypoxia, for example, following blood loss, lead to additional mitogenic signals which greatly accelerate erythroid progenitor proliferation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin (EPO) is typically known for its role in erythropoiesis but is also a potent neurotrophic/neuroprotective factor for spinal motor neurons. Another trophic factor regulated by hypoxia-inducible factor-1, vascular endothelial growth factor (VEGF), signals via ERK and Akt activation to elicit long-lasting phrenic motor facilitation (pMF). Because EPO also signals via ERK and Akt activation, we tested the hypothesis that EPO elicits similar pMF. Using retrograde labeling and immunohistochemical techniques, we demonstrate in adult, male, Sprague Dawley rats that EPO and its receptor, EPO-R, are expressed in identified phrenic motor neurons. Intrathecal EPO at C4 elicits long-lasting pMF; integrated phrenic nerve burst amplitude increased >90 min after injection (63 ± 12% baseline 90 min after injection; p < 0.001). EPO increased phosphorylation (and presumed activation) of ERK (1.6-fold vs controls; p < 0.05) in phrenic motor neurons; EPO also increased pAkt (1.6-fold vs controls; p < 0.05). EPO-induced pMF was abolished by the MEK/ERK inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene] and the phosphatidylinositol 3-kinase/Akt inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one], demonstrating that ERK MAP kinases and Akt are both required for EPO-induced pMF. Pretreatment with U0126 and LY294002 decreased both pERK and pAkt in phrenic motor neurons (p < 0.05), indicating a complex interaction between these kinases. We conclude that EPO elicits spinal plasticity in respiratory motor control. Because EPO expression is hypoxia sensitive, it may play a role in respiratory plasticity in conditions of prolonged or recurrent low oxygen.
    Journal of Neuroscience 04/2012; 32(17):5973-83. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue.
    PLoS ONE 01/2012; 7(2):e31857. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Before establishment of feto-placental circulation, decidua can synthesize hemoproteins to maintain oxygen homeostasis in situ. Using the human decidua of induced abortions ranging from 5 to 8 weeks of gestation, we determined the expression levels of erythropoietin, erythropoietin receptor, cytoglobin, myoglobin, embryonic-, fetal- and adult hemoglobin mRNA by quantitative RT-PCR analysis and identified their proteins by Western blot and immunohistochemical analyses. Erythropoietin signaling was demonstrated in phosphatidylinositol-3-kinase/protein kinase B pathway by Western blot, and the transcriptional factors for erythroid and non-erythroid heme synthesis were examined by RT-PCR analysis. In decidua, erythropoietin and its receptor mRNAs, erythropoietin receptor protein and phosphatidylinositol-3-kinase, were expressed with a peak at 6 weeks of gestation. Moreover, the decidua during 5 to 8 weeks of gestation expressed embryonic, fetal and adult hemoglobins additionally cytoglobin and myoglobin at transcriptional and protein levels. The heme portion of these hemoproteins is considered to be synthesized by non-erythroid δ-aminolevulinate synthase. These hemoproteins were discernible especially in decidual cells concomitant with cytotrophoblast cells and macrophage in these developing decidua. Considering the different capacity for oxygen binding and dissociation among hemoglobins with the oxygen storage capacity for cytoglobin and myoglobin, these hemoproteins appear to play a role in oxygen demand in decidua in situ before development of feto-placental circulation under the control of erythropoietin signaling.
    Congenital Anomalies 03/2013; 53(1):18-26.


1 Download
Available from

Similar Publications