Article

Muto, A. et al. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429, 566-571

Department of Biomedical Chemistry and Leukemia Program Project, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima 734-8551, Japan.
Nature (Impact Factor: 42.35). 07/2004; 429(6991):566-71. DOI: 10.1038/nature02596
Source: PubMed

ABSTRACT Activated B cells differentiate to plasma cells to secrete IgM or, after undergoing class switch recombination (CSR), to secrete other classes of immunoglobulins. Diversification of antibody function by CSR is important for humoral immunity. However, it remains unclear how the decision for the bifurcation is made. Bach2 is a B-cell-specific transcription repressor interacting with the small Maf proteins whose expression is high only before the plasma cell stage. Here we show that Bach2 is critical for CSR and somatic hypermutation (SHM) of immunoglobulin genes. Genetic ablation of Bach2 in mice revealed that Bach2 was required for both T-cell-independent and T-cell-dependent IgG responses and SHM. When stimulated in vitro, Bach2-deficient B cells produced IgM, as did wild-type cells, and abundantly expressed Blimp-1 (refs 9, 10) and XBP-1 (ref. 11), critical regulators of the plasmacytic differentiation, indicating that Bach2 was not required for the plasmacytic differentiation itself. However, they failed to undergo efficient CSR. These findings define Bach2 as a key regulator of antibody response and provide an insight into the orchestration of CSR and SHM during plasma cell differentiation.

Download full-text

Full-text

Available from: Dai Ikebe, Feb 12, 2015
0 Followers
 · 
139 Views
  • Source
    • "Mice. Bach2-deficient mice were described previously (Muto et al., 2004). B cell–specific Blimp-1–deficient mice (Shapiro-Shelef et al., 2003) were provided by K. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary alveolar proteinosis (PAP) results from a dysfunction of alveolar macrophages (AMs), chiefly due to disruptions in the signaling of granulocyte macrophage colony-stimulating factor (GM-CSF). We found that mice deficient for the B lymphoid transcription repressor BTB and CNC homology 2 (Bach2) developed PAP-like accumulation of surfactant proteins in the lungs. Bach2 was expressed in AMs, and Bach2-deficient AMs showed alterations in lipid handling in comparison with wild-type (WT) cells. Although Bach2-deficient AMs showed a normal expression of the genes involved in the GM-CSF signaling, they showed an altered expression of the genes involved in chemotaxis, lipid metabolism, and alternative M2 macrophage activation with increased expression of Ym1 and arginase-1, and the M2 regulator Irf4. Peritoneal Bach2-deficient macrophages showed increased Ym1 expression when stimulated with interleukin-4. More eosinophils were present in the lung and peritoneal cavity of Bach2-deficient mice compared with WT mice. The PAP-like lesions in Bach2-deficient mice were relieved by WT bone marrow transplantation even after their development, confirming the hematopoietic origin of the lesions. These results indicate that Bach2 is required for the functional maturation of AMs and pulmonary homeostasis, independently of the GM-CSF signaling.
    Journal of Experimental Medicine 10/2013; 210(11). DOI:10.1084/jem.20130028 · 13.91 Impact Factor
  • Source
    • "This gene transcribes the BACH2 protein that has high expression in B cells prior to the plasma cell stage of B cell development (Muto et al., 2004). BACH2 is a critical player in class switch recombination and somatic hypermutation (Muto et al., 2004). Little more is known about the mechanisms by which this association operates. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankylosing spondylitis (AS) is a chronic inflammatory arthritis that affects the spine and sacroiliac joints. It causes significant disability and is associated with a number of other features including peripheral arthritis, anterior uveitis, psoriasis and inflammatory bowel disease (IBD). Significant progress has been made in the genetics of AS have in the last five years, leading to new treatments in trial, and major leaps in understanding of the aetiopathogenesis of the disease.
    Molecular Immunology 07/2013; 57(1). DOI:10.1016/j.molimm.2013.06.013 · 3.00 Impact Factor
  • Source
    • "promoter of TRPV2 shows binding sites for regulatory transcription factors such as AP2rep, NF-AT1, NF-AT2, and NF-AT3 as well as for Bach-2 (Su et al., 2004), which is critical for class switch recombination and somatic hypermutation of immunoglobulin genes (Muto et al., 2004). TRPV2 channel has been found to be associated with the recombinase gene activator protein during biosynthesis and early trafficking; it has been observed that over-expression of RGA protein potentiates basal surface localization of TRPV2 and cyclic adenosine monophosphate (cAMP) signal in human non-sensory cells (Barnhill et al., 2004; Stokes et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The transient receptor potential vanilloid type-2 (TRPV2), belonging to the transient receptor potential channel family, is a specialized ion channel expressed in human and other mammalian immune cells. This channel has been found to be expressed in CD34(+) hematopoietic stem cells, where its cytosolic Ca(2) (+) activity is crucial for stem/progenitor cell cycle progression, growth, and differentiation. In innate immune cells, TRPV2 is expressed in granulocytes, macrophages, and monocytes where it stimulates fMet-Leu-Phe migration, zymosan-, immunoglobulin G-, and complement-mediated phagocytosis, and lipopolysaccharide-induced tumor necrosis factor-alpha and interleukin-6 production. In mast cells, activation of TRPV2 allows intracellular Ca(2) (+) ions flux, thus stimulating protein kinase A-dependent degranulation. In addition, TRPV2 is highly expressed in CD56(+) natural killer cells. TRPV2 orchestrates Ca(2) (+) signal in T cell activation, proliferation, and effector functions. Moreover, messenger RNA for TRPV2 are expressed in CD4(+) and CD8(+) T lymphocytes. Finally, TRPV2 is expressed in CD19(+) B lymphocytes where it regulates Ca(2) (+) release during B cell development and activation. Overall, the specific expression of TRPV2 in immune cells suggests a role in immune-mediated diseases and offers new potential targets for immunomodulation.
    Frontiers in Immunology 02/2013; 4:34. DOI:10.3389/fimmu.2013.00034
Show more