Opioid peptide response to spinal cord stimulation in chronic critical limb ischemia.

Dipartimento di Medicina Interna, Cardioangiologia, Epatologia, Ospedale S. Orsola, Via Massarenti 9, 40138 Bologna, Italy.
Peptides (Impact Factor: 2.52). 04/2004; 25(4):571-5. DOI: 10.1016/j.peptides.2004.01.007
Source: PubMed

ABSTRACT Twelve patients with chronic critical limb ischemia in whom a spinal cord stimulation (SCS) system had been implanted for at least one year had increased microvascular flow and achieved healing of trophic acral lesions. After switching off the system, the clinical improvement persisted for 10 days and the neurohormonal pattern showed high plasma values of beta-endorphin and Met-enkephalin, normal dynorphin B, endothelin-1 and catecholamines, and low nitric oxide. Met-enkephalin levels were further increased (P < 0.01) immediately after switching on the electrical stimulation again. The persistence of high plasma opioid levels after switching off the spinal cord stimulation explains the absence of subjective complaints and suggests an involvement of opioids in the regulation and improvement of the microcirculation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We studied circulating levels of endothelin-1, catecholamines and nitric oxide after a mental arithmetic test in 14 patients with early ischemic lesions of the extremities due to systemic sclerosis and slightly impaired peripheral vascular flow. The test induced an increase (P<0.01) in blood pressure, heart rate, endothelin-1 and catecholamine levels, whereas it did not change the low basal levels of nitric oxide. In healthy subjects (n=20) the test significantly (P<0.01) decreased endothelin-1 without affecting nitric oxide. The low basal levels of nitric oxide and the high plasma concentration of endothelin-1 after psychological stress cannot be explained by an impaired release from the limited ischemic lesions alone. This suggests a diffuse microvascular derangement that aggravates the course of peripheral microvascular ischemic lesions.
    Peptides 12/2005; 26(12):2487-90. · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
    Peptides 01/2006; 26(12):2629-711. · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal cord stimulation (SCS) is an effective treatment for neuropathic pain, but its effect on chronic muscle pain is unclear. We designed this study to test the effect of SCS in an animal model of noninflammatory muscle pain. Male Sprague-Dawley rats were implanted with an epidural SCS lead on the upper lumbar spinal cord (L3-L4) under isoflurane anesthesia (4%). Ten days after implantation, chronic muscle pain was induced by giving 2 injections of pH 4 saline into the left gastrocnemius muscle, 5 days apart. In experiment 1, SCS was delivered daily (6-hour duration/day) for 4 days at one of 4 different frequencies (0 (sham), 4, 60, and 100 Hz) from day 6 to day 9. Paw withdrawal threshold and muscle withdrawal threshold were measured before the first injection, and before and during SCS daily. Physical activity (distance, crossing, stand, and grooming) was assessed before the first injection, before SCS on day 6 and during SCS on day 9. In experiment 2, SCS was delivered (6 hours) on day 6 at either 60 or 100 Hz. Paw withdrawal threshold and muscle withdrawal threshold were assessed before the first injection, before and during SCS on day 6, and daily for the following 3 days (day 7-day 9). Paw withdrawal threshold and muscle withdrawal threshold significantly decreased bilaterally after the second injection of acidic saline. SCS delivered at 60 or 100 Hz significantly reversed the decreased paw withdrawal threshold and muscle withdrawal threshold bilaterally when compared with that of sham SCS, but 4 Hz SCS had no effect on paw withdrawal threshold and muscle withdrawal threshold. SCS (60 or 100 Hz) delivered daily provided a persistently reversed effect, and SCS delivered singly provided a carryover effect for 24 hours. During 60 Hz SCS, the distance traveled and the number of crossings increased significantly when compared with that of sham SCS. The current study shows that higher frequencies of SCS (60 and 100 Hz) significantly reduce mechanical hyperalgesia of the paw and muscle in an animal model of noninflammatory muscle pain, and 60 Hz SCS restores physical activity levels of animals, not 4 Hz.
    Anesthesia and analgesia 05/2014; · 3.08 Impact Factor