Article

Energy expenditure is very high in extremely obese women.

Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
Journal of Nutrition (Impact Factor: 4.23). 06/2004; 134(6):1412-6.
Source: PubMed

ABSTRACT To test the hypothesis that total energy expenditure (TEE) and resting energy expenditure (REE) are low in extremely obese individuals, factors that could contribute to maintenance of excess weight, a cross-sectional study was conducted in 30 weight stable, extremely obese women [BMI (mean +/- SEM) 48.9 +/- 1.7 kg/m(2)]. TEE was measured over 14 d using the doubly labeled water method, REE and the thermic effect of feeding (TEF) were measured using indirect calorimetry, and activity energy expenditure (AEE) was calculated as TEE - (REE + TEF). Body composition was determined using a 3-compartment model. Subjects were divided into tertiles of BMI (37.5-45.0; 45.1-52.0; and 52.1-77.0 kg/m(2)) for data analysis. TEE and REE increased with increasing BMI tertile: TEE, 12.80 +/- 0.5, 14.67 +/- 0.5, and 16.10 +/- 0.9 MJ/d (P < 0.01); REE, 7.87 +/- 0.2, 8.78 +/- 0.3, and 9.94 +/- 0.6 MJ/d (P < 0.001), and these values were 29-38% higher than published means of measured TEE in nonobese individuals. No significant differences were observed among BMI tertiles for AEE, TEF, or physical activity level (PAL = TEE/REE, overall mean 1.64 +/- 0.16). The Harris-Benedict and WHO equations provided the closest estimates of REE (within 3%), whereas the obese-specific equations of Ireton-Jones overpredicted (40%) and Bernstein underpredicted (21%) REE. Extremely obese individuals have high absolute values for TEE and REE, indicating that excess energy intake contributes to the maintenance of excess weight. Standard equations developed for nonobese populations provided the most accurate estimates of REE for the obese individuals studied here. REE was not accurately predicted by equations developed in obese populations.

1 Follower
 · 
503 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress places a metabolic burden on homeostasis and is linked to heightened sympathetic activity, increased energy expenditure and pathology. The yogic state is a hypometabolic state that corresponds with mind-body coherence and reduced stress. This study aimed to investigate metabolic responses to stress and different yoga practices in regular yoga practitioners (YP), non-yoga practitioners (NY) and metabolic syndrome patients (MS).
    BMC Complementary and Alternative Medicine 11/2014; 14(1):445. DOI:10.1186/1472-6882-14-445 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In clinical practice obesity is primarily diagnosed through the body mass index. In order to characterize patients affected by obesity the use of traditional anthropometric measures appears misleading. Beyond the body mass index, there are overwhelming evidences towards the relevance of a more detailed description of the individual phenotype by characterizing the main body components as free-fat mass, muscle mass, and fat mass. Among the numerous techniques actually available, bioelectrical impedance analysis seems to be the most suitable in a clinical setting because it is simple, inexpensive, noninvasive, and highly reproducible. To date, there is no consensus concerning the use of one preferred equation for the resting energy expenditure in overweight and/or obese population. Energy restriction alone is an effective strategy to achieve an early and significant weight loss, however it results in a reduction of both fat and lean mass therefore promoting or aggravating an unfavourable body composition (as sarcobesity) in terms of mortality and comorbidities. Therefore the implementation of daily levels of physical activity should be simultaneously promoted. The major role of muscle mass in the energy balance has been recently established by the rising prevalence of the combination of two condition as sarcopenia and obesity. Physical exercise stimulates energy expenditure, thereby directly improving energy balance, and also promotes adaptations such as fiber type, mitochondrial biogenesis, improvement of insulin resistance, and release of myokines, which may influence different tissues, including muscle.
    03/2015; 5(1):1-9. DOI:10.5662/wjm.v5.i1.1
  • e-SPEN the European e-Journal of Clinical Nutrition and Metabolism 10/2013; 8(6):e246-e250. DOI:10.1016/j.clnme.2013.09.001

Full-text

Download
140 Downloads
Available from
May 29, 2014