Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest.

Department of Anesthesiology and Critical Care, Lariboisière University Hospital, 2 Rue Ambroise Paré, 75010 Paris, France.
Resuscitation (Impact Factor: 3.96). 07/2004; 61(3):265-71. DOI: 10.1016/j.resuscitation.2004.01.032
Source: PubMed

ABSTRACT The purpose of this multicentre clinical randomized controlled blinded prospective trial was to determine whether an inspiratory impedance threshold device (ITD), when used in combination with active compression-decompression (ACD) cardiopulmonary resuscitation (CPR), would improve survival rates in patients with out-of-hospital cardiac arrest.
Patients were randomized to receive either a sham (n = 200) or an active impedance threshold device (n = 200) during advanced cardiac life support performed with active compression-decompression cardiopulmonary resuscitation. The primary endpoint of this study was 24 h survival. The 24 h survival rates were 44/200 (22%) with the sham valve and 64/200 (32%) with the active valve (P = 0.02). The number of patients who had a return of spontaneous circulation (ROSC), intensive care unit (ICU) admission, and hospital discharge rates was 77 (39%), 57 (29%), and 8 (4%) in the sham valve group versus 96 (48%) (P = 0.05), 79 (40%) (P = 0.02), and 10 (5%) (P = 0.6) in the active valve group. Six out of ten survivors in the active valve group and 1/8 survivors in the sham group had normal neurological function at hospital discharge (P = 0.1).
The use of an impedance valve in patients receiving active compression-decompression cardiopulmonary resuscitation for out-of-hospital cardiac arrest significantly improved 24 h survival rates.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In Germany 100,000-160,000 people suffer from out-of-hospital cardiac arrest (OHCA) annually. The incidence of cardiopulmonary resuscitation (CPR) after OHCA varies between emergency ambulance services but is in the range of 30-90 CPR attempts per 100,000 inhabitants per year. Basic life support (BLS) involving chest compressions and ventilation is the key measure of resuscitation. Rapid initiation and quality of BLS are the most critical factors for CPR success. Even healthcare professionals are not always able to ensure the quality of CPR measures. Consequently in recent years mechanical resuscitation devices have been developed to optimize chest compression and the resulting circulation. In this article the mechanical resuscitation devices currently available in Germany are discussed and evaluated scientifically in context with available literature. The ANIMAX CPR device should not be used outside controlled trials as no clinical results have so far been published. The same applies to the new device Corpuls CPR which will be available on the market in early 2014. Based on the current published data a general recommendation for the routine use of LUCAS™ and AutoPulse® CPR cannot be given. The preliminary data of the CIRC trial and the published data of the LINC trial revealed that mechanical CPR is apparently equivalent to good manual CPR. For the final assessment further publications of large randomized studies must be analyzed (e.g. the CIRC and PaRAMeDIC trials). However, case control studies, case series and small studies have already shown that in special situations and in some cases patients will benefit from the automatic mechanical resuscitation devices (LUCAS™, AutoPulse®). This applies especially to emergency services where standard CPR quality is far below average and for patients who require prolonged CPR under difficult circumstances. This might be true in cases of resuscitation due to hypothermia, intoxication and pulmonary embolism as well as for patients requiring transport or coronary intervention when cardiac arrest persists. Three prospective randomized studies and the resulting meta-analysis are available for active compression-decompression resuscitation (ACD-CPR) in combination with an impedance threshold device (ITD). These studies compared ACD-ITD-CPR to standard CPR and clearly demonstrated that ACD-ITD-CPR is superior to standard CPR concerning short and long-term survival with good neurological recovery after OHCA.
    Der Anaesthesist 02/2014; · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: RECOVER was created to optimize survival of small animal patients from cardiopulmonary arrest. Several findings from this study are applicable to cardiopulmonary resuscitation in the neonatal foal. In particular, chest compressions should be a priority with no pauses and a "push hard, push fast" approach. The importance of ventilation is minimized with short, infrequent breaths at a rate of 10 to 20 per minute recommended.
    Veterinary Clinics of North America: Equine Practice. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently published evidence has challenged some protocols related to oxygenation, ventilation, and airway management for out-of-hospital cardiac arrest. Interrupting chest compressions to attempt airway intervention in the early stages of OHCA in adults may worsen patient outcomes. The change of BLS algorithms from ABC to CAB was recommended by the AHA in 2010. Passive insufflation of oxygen into a patent airway may provide oxygenation in the early stages of cardiac arrest. Various alternatives to tracheal intubation or bag-mask ventilation have been trialled for prehospital airway management. Simple methods of airway management are associated with similar outcomes as tracheal intubation in patients with OHCA. The insertion of a laryngeal mask airway is probably associated with worse neurologically intact survival rates in comparison with other methods of airway management. Hyperoxemia following OHCA may have a deleterious effect on the neurological recovery of patients. Extracorporeal oxygenation techniques have been utilized by specialized centers, though their use in OHCA remains controversial. Chest hyperinflation and positive airway pressure may have a negative impact on hemodynamics during resuscitation and should be avoided. Dyscarbia in the postresuscitation period is relatively common, mainly in association with therapeutic hypothermia, and may worsen neurological outcome.
    BioMed research international. 01/2014; 2014:376871.

Full-text (2 Sources)

Available from
Jun 2, 2014