Article

Post-translational modifications of sibling proteins and their roles in osteogenesis and dentinogenesis.

The Department of Endodontics and Periodontics, University of Texas-Houston Health Science Center, Dental Branch, Houston, TX 77030, USA.
Critical reviews in oral biology and medicine: an official publication of the American Association of Oral Biologists 02/2004; 15(3):126-36. DOI: 10.1177/154411130401500302
Source: PubMed

ABSTRACT The extracellular matrix (ECM) of bone and dentin contains several non-collagenous proteins. One category of non-collagenous protein is termed the SIBLING (Small Integrin-Binding LIgand, N-linked Glycoprotein) family, that includes osteopontin (OPN), bone sialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP), and matrix extracellular phosphoglycoprotein (MEPE). These polyanionic SIBLING proteins are believed to play key biological roles in the mineralization of bone and dentin. Although the specific mechanisms involved in controlling bone and dentin formation are still unknown, it is clear that some functions of the SIBLING family members are dependent on the nature and extent of post-translational modifications (PTMs), such as phosphorylation, glycosylation, and proteolytic processing, since these PTMs would have significant effects on their structure. OPN and BSP are present in the ECM of bone and dentin as full-length forms, whereas amino acid sequencing indicates that DMP1 and DSPP exist as proteolytically processed fragments that result from scission of X-Asp bonds. We hypothesized that the processing of DMP1 and DSPP is catalyzed by the PHEX enzyme, since this protein, an endopeptidase that is predominantly expressed in bone and tooth, has a strong preference for cleavage at the NH2-terminus of aspartyl residue. We envision that the proteolytic processing of DMP1 and DSPP may be an activation process that plays a significant, crucial role in osteogenesis and dentinogenesis, and that a failure in this processing would cause defective mineralization in bone and dentin, as observed in X-linked hypophosphatemic rickets.

0 Bookmarks
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FAM20C is a kinase that phosphorylates secretory proteins. Previous studies have shown that FAM20C plays an essential role in the formation and mineralization of bone, dentin and enamel. The present study analyzed the loss-of-function effects of FAM20C on the health of mouse periodontal tissues. By crossbreeding 2.3 kb Col 1a1-Cre mice with Fam20Cfl/fl mice, we created 2.3 kb Col 1a1-Cre;Fam20Cfl/fl (cKO) mice, in which Fam20C was inactivated in the cells that express Type I collagen. We analyzed the periodontal tissues in the cKO mice using X-ray radiography, histology, scanning electron microscopy and immunohistochemistry approaches. The cKO mice underwent a remarkable loss of alveolar bone and cementum, along with inflammation of the periodontal ligament and formation of periodontal pockets. The osteocytes and lacuno-canalicular networks in the alveolar bone of the cKO mice showed dramatic abnormalities. The levels of bone sialoprotein, osteopontin, dentin matrix protein 1 and dentin sialoprotein were reduced in the Fam20C-deficient alveolar bone and/or cementum, while periostin and fibrillin-1 were decreased in the periodontal ligament of the cKO mice. Loss of Fam20C function leads to periodontal disease in mice. The reduced levels of bone sialoprotein, osteopontin, dentin matrix protein 1, dentin sialoprotein, periostin and fibrillin-1 may contribute to the periodontal defects in the Fam20C-deficient mice.
    PLoS ONE 12/2014; 9(12):e114396. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conceptually, two types of tertiary dentine may be produced in response to caries and environmental irritations: "reactionary dentine" that is secreted by existing primary odontoblasts and "reparative dentin", formed after the death of the odontoblasts by proliferation and differentiation of progenitor cells into odontoblast-like cells. Because histologic evidence for tubular dentine generated by newly-differentiated odontoblast-like cells is lacking in human teeth, the present study examined pulpal cellular changes associated with caries/restorations, in the presence or absence of pulpal exposures.
    Journal of Dentistry 07/2014; · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.
    PLoS ONE 12/2014; 9(12):e114308. · 3.53 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Nov 4, 2014