Transplantation of cardiotrophin-1-expressing myoblasts to the left ventricular wall alleviates the transition from compensatory hypertrophy to congestive heart failure in Dahl salt-sensitive hypertensive rats.

Division of Cardiovascular and Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
Journal of the American College of Cardiology (Impact Factor: 14.09). 07/2004; 43(12):2337-47. DOI: 10.1016/j.jacc.2004.02.048
Source: PubMed

ABSTRACT We investigated whether autologous transplantation of skeletal myoblasts (MB) transferred with cardiotrophin-1 (CT-1) gene could retard the transition to heart failure (HF) in Dahl salt-sensitive (DS) hypertensive rats.
Although MB is a therapeutic candidate for chronic HF, little is known about the efficiency of this strategy when applied in nonischemic HF. Cardiotrophin-1 has potent hypertrophic and survival effects on cardiac myocytes. We hypothesized that transplantation of CT-1-expressing myoblasts could provide cardioprotective effects against ventricular remodeling in DS hypertensive rats.
The DS rats were fed a high salt diet for 6 weeks and developed left ventricular (LV) hypertrophy at 11 weeks. At this stage, animals underwent MB to the myocardium with skeletal myoblasts transferred with CT-1 gene using retrovirus (transplantation of CT-1-expressing myoblasts [MB + CT], n = 31) or myoblasts alone (MB, n = 31). The sham group rats were injected with phosphate-buffered saline (n = 24).
At 17 weeks, MB and MB + CT groups showed a significant alleviation of LV dilation and contractile dysfunction compared with the sham group. The degree of alleviation was significantly greater in the MB + CT group than the MB group (LV end-diastolic dimension: sham 7.06 +/- 0.14 mm, MB 6.51 +/- 0.16 mm, MB + CT 6.24 +/- 0.07 mm; fractional shortening: sham 32.1 +/- 1.4%, MB 38.5 +/- 1.5%, MB + CT 43.2 +/- 0.8%). Histological examination revealed that the myocyte size was 20% larger in the MB + CT group at 17 weeks than in the age-matched sham group. Upregulation of renin-angiotensin and endothelin systems during the transition to HF was attenuated by myoblast transplantation, and this effect was enhanced in the MB + CT group.
Transplantation of skeletal myoblasts combined with CT-1-gene transfer could be a useful therapeutic strategy for HF.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Silica-based hybrid mesostructured materials (MCM-41 type) containing surfactant- embedded Methylene Blue have been prepared and characterized by several techniques, including UV-Vis spectroscopy and cyclic voltammetry, and compared to other systems containing the same dye molecule. The micellar phase of the hybrid material was found to be permeable to protons, which may be of interest for potential applications in chemical and biological sensing devices.
    Studies in Surface Science and Catalysis - STUD SURF SCI CATAL. 01/2003; 146:379-382.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of human autologous transplanted skeletal myoblast (SkM) cell death in ischemic myocardium was higher in the first few days after cell therapy. We proposed that human SkM treated by human stromal cell-derived factor (SDF-1α) protein or tranfected by SDF-1α, precondition them against oxidative or anoxic injury. The purification of human SkM (80∼90%) culture was assessed for desmin and CXCR4 expression using immunostaining and flow cytometry respectively. Cells were transfected to overexpress SDF-1α or treated with rSDF-1α (10∼200 ng/ml, 1∼4 h) were either exposed to anoxia or treated with 100μM H2O2 for different time periods (1∼6 h anoxia) (1∼3 h H2O2). Optimized conditions for transfection of SDF-1α gene into human SkM were achieved, using FuGene(TM)6/phSDF-1α(3:2 v/w, 4 h transfection) with 125μ M ZnCl2 (p< 0.001), up to 7 days post-transfection as compared with transfected SkM without ZnCl2 and non-transfected control cells. Transfection efficiency was assessed by immunostaining, ELISA, western blots and PCR. LDH analysis showed significant decrease in release of LDH after exposure to 6 h anoxia or 100μ M H2O2 for 2 h as compared with the normal un-treated or un-transfected SkM (p< 0.001). In western blots assay, SDF-1α over-expressing human SkM or treated with rSDF-1α induced marked expression of total Akt (1.2-fold) and phospho-Akt (2.7-fold), Bcl2 (1.6-fold) and VEGF (5.8-fold) after exposure to 6 h anoxia as compared with human SkM controls. The preconditioning of donor transplanted human SkM with SDF-1α increased cell survival and promoted cytoprotective effect against oxidative or anoxic injury that may be an innovative approach for clinical application.
    International journal of stem cells. 06/2011; 4(1):50-60.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow mononuclear cells (BMMNCs) increase capillary density and reduce fibrosis in rodents after myocardial infarction, resulting in an overall improvement in left ventricular function. Little is known about the effectiveness of BMMNC therapy in hypertensive heart disease. In the current study, we show that delivery of BMMNCs from hypertension protected SS-13(BN)/MCWi donor rats, but not BMMNC from hypertension susceptible SS/MCWi donor rats, resulted in 57.2 and 83.4% reductions in perivascular and interstitial fibrosis, respectively, as well as a 60% increase in capillary-to-myocyte count in the left ventricles (LV) of hypertensive SS/MCWi recipients. These histological changes were associated with improvements in LV compliance and relaxation (103 and 46.4% improvements, respectively). Furthermore, improved diastolic function in hypertensive SS/MCWi rats receiving SS-13(BN)/MCWi derived BMMNCs was associated with lower clinical indicators of heart failure, including reductions in end diastolic pressure (65%) and serum brain natriuretic peptide levels (49.9%) with no improvements observed in rats receiving SS/MCWi BMMNCs. SS/MCWi rats had a lower percentage of endothelial progenitor cells in their bone marrow relative to SS-13(BN)/MCWi rats. These results suggest that administration of BMMNCs can prevent or reverse pathological remodeling in hypertensive heart disease, which contributes to ameliorating diastolic dysfunction and associated symptomology. Furthermore, the health and hypertension susceptibility of the BMMNC donor are important factors influencing therapeutic efficacy, possibly via differences in the cellular composition of bone marrow.
    Physiological Genomics 07/2012; 44(19):925-33. · 2.81 Impact Factor

Full-text (2 Sources)

1 Download
Available from
May 26, 2014