Prebiotic Chemistry and the Origin of the RNA World

The Salk Institute, La Jolla, California 92097, USA.
Critical Reviews in Biochemistry and Molecular Biology (Impact Factor: 5.81). 03/2010; 39(2):99-123. DOI: 10.1080/10409230490460765
Source: PubMed

ABSTRACT The demonstration that ribosomal peptide synthesis is a ribozyme-catalyzed reaction makes it almost certain that there was once an RNA World. The central problem for origin-of-life studies, therefore, is to understand how a protein-free RNA World became established on the primitive Earth. We first review the literature on the prebiotic synthesis of the nucleotides, the nonenzymatic synthesis and copying of polynucleotides, and the selection of ribozyme catalysts of a kind that might have facilitated polynucleotide replication. This leads to a brief outline of the Molecular Biologists' Dream, an optimistic scenario for the origin of the RNA World. In the second part of the review we point out the many unresolved problems presented by the Molecular Biologists' Dream. This in turn leads to a discussion of genetic systems simpler than RNA that might have "invented" RNA. Finally, we review studies of prebiotic membrane formation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria that grow and proliferate despite having been stripped of their cell wall may provide insights into how primordial cells could have propagated billions of years ago.
    eLife Sciences 11/2014; 3:e05427. DOI:10.7554/eLife.05427 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose-5-phosphate and the amino acid precursor erythrose-4-phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron-rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.
    Molecular Systems Biology 04/2014; 10(4). DOI:10.1002/msb.20145228 · 14.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, borate was found to selectively increase the stability of ribose over other aldopentoses. Ribose is the only sugar present in both early RNA-based biochemistry and contemporary DNA-based life, and the stability of ribose is of fundamental concern for determining the origin of early RNA-based biochemistry. The formose reaction is a potential process in the prebiotic synthesis of ribose and its stereoisomers arabinose, xylose, and lyxose. Ribose is the least stable of these aldopentoses, raising the fundamental question of whether it was originally a component of primitive RNA or was selected through biotic processes. Borate is known to increase the stability of aldopentoses, but the specific differences in the stabilization achieved among different stereoisomers remain unclear. In this study, it was found that the stabilities of all of the tested pentoses increased with the concentration of added borate, but notably, the stability of ribose increased the most. The predominant formation of complexes between borate and ribose was verified, in agreement with previous studies. This borate complex formation might have sequestered ribose from the isomerization and decomposition reactions, resulting in its selective stabilization. These findings indicate that ribose could have accumulated in borate-rich environments on the early Earth and suggest that ribose-based nucleotides combined with phosphate and nucleobases formed abiotically.
    Origins of Life 12/2013; 43(4-5). DOI:10.1007/s11084-013-9350-5 · 1.77 Impact Factor


Available from