Article

Effects of the calcitonin gene-related peptide (CGRP) receptor antagonist BIBN4096BS on alpha-CGRP-induced regional haemodynamic changes in anaesthetised rats.

Department of Pharmacology, Cardiovascular Research Institute COEUR, Erasmus MC, University Medical Center Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
Basic &amp Clinical Pharmacology &amp Toxicology (Impact Factor: 2.12). 07/2004; 94(6):291-7. DOI: 10.1111/j.1742-7843.2004.pto940606.x
Source: PubMed

ABSTRACT Several studies suggest that a calcitonin gene-related peptide (CGRP) receptor antagonist may have antimigraine properties, most probably via the inhibition of CGRP-induced cranial vasodilatation. We recently showed that the novel selective CGRP receptor antagonist, BIBN4096BS (1-piperidinecarboxamide, -N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl] carbonyl] pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl) methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-, [[R-(R,(R*,S*)]), attenuated the CGRP-induced porcine carotid vasodilatation in a model predictive of antimigraine activity. In order to evaluate the potential safety of BIBN4096BS in migraine therapy, this study was designed to investigate the effects of intravenous BIBN4096BS on alpha-CGRP-induced systemic and regional haemodynamic changes in anaesthetised rats, using radioactive microspheres. In vehicle-pretreated animals, consecutive intravenous infusions of alpha-CGRP (0.25, 0.5 and 1 microg kg(-1) min.(-1)) dose-dependently decreased mean arterial blood pressure with an accompanying increase in heart rate and systemic vascular conductance whereas cardiac output remained unchanged. Alpha-CGRP also increased the vascular conductance to the heart, brain, gastrointestinal tract, adrenals, skeletal muscles and skin, whilst that to the kidneys, spleen, mesentery/pancreas and liver remained unaltered. The above systemic and regional haemodynamic responses to alpha-CGRP were clearly attenuated in BIBN4096BS (3 mg kg(-1) intravenously)-pretreated animals. These results indicate that exogenously administered alpha-CGRP dilates regional vascular beds via CGRP receptors on the basis of the antagonism produced by BIBN4096BS. Moreover, the fact that BIBN4096BS did not alter baseline haemodynamics suggests that endogenously produced CGRP does not play an important role in regulating the systemic and regional haemodynamics under resting conditions.

0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of calcitonin gene-related peptide (CGRP) receptor antagonism with CGRP 8-37 on blood pressure changes evoked by the intravenous administration of the vasoactive modulators angiotensin II, phenylephrine, adenosine, nitroglycerine, and sodium nitroprusside were assessed in conscious rats. The effects of sumatriptan and dihydroergotamine on the blood pressure responses evoked by these vasomodulators also were assessed. The intravenous test dose of CGRP 8-37 was validated through block of depressor responses to intravenous CGRP in conscious rats, whereas the intravenous test doses of sumatriptan and dihydroergotamine were validated by reductions in carotid blood flow in anesthetized rats. CGRP 8-37 had no significant effects on blood pressure dose-response profiles and individual dose blood pressure responses to any of the vasomodulators tested. In contrast, sumatriptan altered the blood pressure dose-response profiles to angiotensin II and sodium nitroprusside (P < 0.03) and dihydroergotamine altered the blood pressure dose-response profile to sodium nitroprusside (P < 0.02) and tended to alter that of phenylephrine (P = 0.06). Both sumatriptan and dihydroergotamine displayed frequent alterations of individual dose blood pressure responses to all vasomodulators. These findings are consistent with concerns for sumatriptan and dihydroergotamine to alter systemic hemodynamics, whereas CGRP receptor antagonism did not display the same hemodynamic liability.
    Journal of cardiovascular pharmacology 11/2010; 56(5):518-25. · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Migraine is a highly prevalent neurovascular disorder that can be provoked by infusion of calcitonin gene-related peptide (CGRP). CGRP, a neuropeptide released from activated trigeminal sensory nerves, dilates intracranial and extracranial blood vessels and centrally modulates vascular nociception. On this basis, it has been proposed that: (i) CGRP may play an important role in the pathophysiology of migraine; and (ii) blockade of CGRP receptors may abort migraine.With the advent of potent and selective CGRP receptor antagonists, the importance of CGRP in the pathophysiology of migraine and the therapeutic principle of CGRP receptor antagonism were clearly established. Indeed, both olcegepant (BIBN4096BS, given intravenously) and telcagepant (MK-0974, given orally) have been shown to be safe, well tolerated and effective acute antimigraine agents in phase I, phase II, and for telcagepant phase III, studies. However, recent data reported elevated liver transaminases when telcagepant was dosed twice daily for three months for the prevention of migraine rather than acutely.The potential for a specific acute antimigraine drug, without producing vasoconstriction or vascular side effects and with an efficacy comparable to triptans, is enormous. The present review will discuss the role of CGRP in the pathophysiology of migraine and the various treatment modalities that are currently available to target this neuropeptide.
    Pharmacology [?] Therapeutics 01/2009; · 7.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Currently available drugs for the acute treatment of migraine, i.e. ergot alkaloids and triptans, are cranial vasoconstrictors. Although cranial vasoconstriction is likely to mediate-at least a part of-their therapeutic effects, this property also causes vascular side-effects. Indeed, the ergot alkaloids and the triptans have been reported to induce myocardial ischemia and stroke, albeit in extremely rare cases, and are contraindicated in patients with known cardiovascular risk factors. In view of these limitations, novel antimigraine drugs devoid of vascular (side) effects are being explored. Currently, calcitonin gene-related peptide (CGRP) receptor antagonists, which do not have direct vasoconstrictor effects, are under clinical development. Other classes of drugs, such as 5-HT(1F) receptor agonists, glutamate receptor antagonists, nitric oxide synthase inhibitors, VPAC/PAC receptor antagonists and gap junction modulators, have also been proposed as potential targets for acute antimigraine drugs. Although these prospective drugs do not directly induce vasoconstriction, they may well induce indirect vascular effects by inhibiting or otherwise modulating the responses to endogenous vasoactive substances. These indirect vascular effects might contribute to the therapeutic efficacy of the previously mentioned compounds, but may alternatively also lead to vascular side-effects. As described in the current review, some of the prospective antimigraine drugs with a proposed non-vascular mechanism of action may still have direct or indirect vascular effects.
    Pharmacology [?] Therapeutics 03/2011; 129(3):332-51. · 7.79 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from
Oct 6, 2014