Article

Role of uncoupling protein 2 (UCP2) expression and 1 alpha,25-dihydroxyvitamin D-3 in modulating adipocyte apoptosis

Department of Nutrition, University of Tennessee, Knoxville, TN 37996-1900, USA.
The FASEB Journal (Impact Factor: 5.48). 09/2004; 18(12):1430-2. DOI: 10.1096/fj.04-1971fje
Source: PubMed

ABSTRACT We previously found that 1alpha, 25-dihydroxyvitamin D3 [1alpha, 25-(OH)2-D3] modulates adipocyte lipid metabolism via a Ca2+-dependent mechanism and inhibits adipocyte UCP2 expression, indicating that the anti-obesity effects of dietary calcium are mediated by suppression of 1alpha, 25-(OH)2-D3 levels. However, because UCP2 reduces mitochondrial potential, we have evaluated the roles of UCP2, mitochondrial uncoupling, and 1alpha, 25-(OH)2-D3 in adipocyte apoptosis. Overexpressing UCP2 in 3T3-L1 cells induced marked reductions in mitochondrial potential (Deltapsi) and ATP production (P<0.01), increases in the expression of caspases (P<0.05), and a decrease in Bcl-2/Bax expression ratio (P<0.01). Physiological doses of 1alpha, 25-(OH)2-D3 (0.1-10 nM) restored mitochondrial Deltapsi in LI-UCP2 cells and protected against UCP2 overexpression-induced apoptosis (P<0.01), whereas a high dose (100 nM) stimulated apoptosis in 3T3-L1 and L1-UCP2 cells (P<0.05). 1alpha, 25-(OH)2-D3 stimulated cytosolic Ca2+ dose-dependently in both 3T3-L1 and L1-UCP2 cells. However, physiological doses suppressed mitochondrial Ca2+ levels by approximately 50% whereas the high dose increased mitochondrial Ca2+ by 25% (P<0.05); this explains stimulation of apoptosis by the high dose of 1alpha, 25-(OH)2-D3. Using high-calcium diets to suppress 1alpha, 25-(OH)2-D3 stimulated adipose tissue apoptosis in aP2 transgenic mice (P<0.01), suggesting that increasing dietary calcium stimulates adipose apoptosis and thereby further contributes to an anti-obesity effect of dietary calcium.

0 Bookmarks
 · 
60 Views