Stretching and injury prevention: an obscure relationship.

Department of Rehabilitation Sciences and Physical Therapy, Faculty of Medicine and Health Sciences, Ghent University, Belgium.
Sports Medicine (Impact Factor: 5.32). 02/2004; 34(7):443-9.
Source: PubMed

ABSTRACT It is generally accepted that increasing the flexibility of a muscle-tendon unit promotes better performances and decreases the number of injuries. Stretching exercises are regularly included in warm-up and cooling-down exercises; however, contradictory findings have been reported in the literature. Several authors have suggested that stretching has a beneficial effect on injury prevention. In contrast, clinical evidence suggesting that stretching before exercise does not prevent injuries has also been reported. Apparently, no scientifically based prescription for stretching exercises exists and no conclusive statements can be made about the relationship of stretching and athletic injuries. Stretching recommendations are clouded by misconceptions and conflicting research reports. We believe that part of these contradictions can be explained by considering the type of sports activity in which an individual is participating. Sports involving bouncing and jumping activities with a high intensity of stretch-shortening cycles (SSCs) [e.g. soccer and football] require a muscle-tendon unit that is compliant enough to store and release the high amount of elastic energy that benefits performance in such sports. If the participants of these sports have an insufficient compliant muscle-tendon unit, the demands in energy absorption and release may rapidly exceed the capacity of the muscle-tendon unit. This may lead to an increased risk for injury of this structure. Consequently, the rationale for injury prevention in these sports is to increase the compliance of the muscle-tendon unit. Recent studies have shown that stretching programmes can significantly influence the viscosity of the tendon and make it significantly more compliant, and when a sport demands SSCs of high intensity, stretching may be important for injury prevention. This conjecture is in agreement with the available scientific clinical evidence from these types of sports activities. In contrast, when the type of sports activity contains low-intensity, or limited SSCs (e.g. jogging, cycling and swimming) there is no need for a very compliant muscle-tendon unit since most of its power generation is a consequence of active (contractile) muscle work that needs to be directly transferred (by the tendon) to the articular system to generate motion. Therefore, stretching (and thus making the tendon more compliant) may not be advantageous. This conjecture is supported by the literature, where strong evidence exists that stretching has no beneficial effect on injury prevention in these sports. If this point of view is used when examining research findings concerning stretching and injuries, the reasons for the contrasting findings in the literature are in many instances resolved.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to evaluate the effects of stretching management on musculoskeletal joint pain in community indwelling elderly farmers. The study included 28 residents who lived in a rural community. All participants were assigned randomly to either the stretching group (n=13, year-old) or the control group (n=15, year-old). Respondents were interviewed by means of a structured questionnaire. Pain severity of 6 body areas caused by symptoms of work-related musculoskeletal disorders and pain severity on day time variations were measured by the visual analogue scale on a self-assessed questionnaire. The stretching group was administered stretching therapy (45 min, 2 sets, warming up and cool down, main exercise; total 19 stretching kinds of subset 5 fields) for 12 times for 4 weeks. There were no significant difference between the two groups in general social and pain characteristics. After 4 weeks of stretching, the stretching group showed significant improvements at almost all joint pain scores except arm/elbow, and day time variation scores of pain compared to both baseline scores, and with control group scores. These results showed that stretching therapy is one of the most useful modalities to manage musculoskeletal pain in community-based elderly farmers.
    Journal of the Korea Academia-Industrial cooperation Society. 10/2011; 12(10).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene variants encoding for proteins involved in homeostatic processes within tendons may influence its material and mechanical properties in humans. The purpose of this study was to examine the association between one such gene variant, gene encoding collagen type V alpha 1 chain (COL5A1) rs12722, and patellar tendon dimensions and mechanical properties in vivo. Eighty-four recreationally active, Caucasian, men and women, aged 18-39, with no history of injuries to the knee and a body mass index between 18.5 and 30 were recruited. Women were not recruited if they were pregnant or using any form of hormone-based contraception. The COL5A1 rs12722 genotype was determined using real-time polymerase chain reaction. Patellar tendon dimensions (volume) and functional (elastic modulus) properties were assessed in vivo using geometric modelling, isokinetic dynamometry, electromyography and ultrasonography. After adjustments for non-genetic factors, no significant associations were evident between the COL5A1 rs12722 gene variant and either patellar tendon volume (P = 0.933) or elastic modulus (P = 0.206), nor with a calculated Z score that combined these dimensional and functional properties into a composite value (P = 0.647). Similarly, no association was evident when comparing individuals with/without the rare C allele (volume, P = 0.883; elastic modulus, P = 0.129; Z score, P = 0.631). Tendon properties do not seem to be influenced by the COL5A1 rs12722 gene variant. Although the COL5A1 rs12722 polymorphism has previously been associated with the risk of tendon pathology, that association is unlikely to be mediated via underlying tendon dimensional and functional properties.
    Arbeitsphysiologie 03/2014; · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine the effects of warm-up and cool-down exercises on pain and muscle activation of delayed onset muscle soreness after intense exercise. Delayed onset muscle soreness was caused by the eccentric exercise in the elbow flexor muscle of the non-dominant upper limb. Forty-four subjects volunteered to participate in this study and were randomly assigned to one of the following groups: warm-up and cool-down group, only warm-up group, only cool-down group, or control group with no intervention. The level of perceived pain using the visual analogue scale and electromyographic activation change in maximal voluntary isometric contraction were measured 4 times at the following times: 10 min, 24 hr, 48 hr, and 72 hr after the exercise. The results revealed the main effect between the groups and interaction effect between the group and measurement session (p
    Physical Therapy Korea. 02/2013; 20(1).

Full-text (2 Sources)

Available from
May 21, 2014