Immortalization and characterization of human myometrial cells from term-pregnant patients using a telomerase expression vector

Department of Obstetrics and GynecologySealy Center for Molecular Science, University of Texas Medical Branch, Galveston, TX 77555-1062, USA.
Molecular Human Reproduction (Impact Factor: 3.75). 10/2004; 10(9):685-95. DOI: 10.1093/molehr/gah086
Source: PubMed


An examination of cellular processes involved in myometrial function has been greatly assisted by the use of human myometrial cells in primary culture. However, these cells can be used only for several passages before they senesce, and responses to various agents change with time in culture. The use of transformed cells is limited, as they can be polynucleated and can lose or gain chromosomes. We have developed three telomerase-immortalized cell lines from term-pregnant human myometrium to eliminate variability between passage numbers and allow genetic manipulations of myometrial cells to fully characterize signal pathways. These cells have a normal karyotype and were verified to be uterine smooth muscle by immunocytochemical staining for smooth muscle cell-specific alpha-actin and high affinity oxytocin antagonist binding sites. The three cell lines and the cells in primary culture from which they were derived were examined by cDNA microarray analysis. Of >10 000 expressed genes, there were consistent changes in the expression of approximately 1% in the three immortalized cell lines. We were unable to detect any significant differences between primary and immortalized cells in signal pathways such as epidermal growth factor-stimulated epidermal growth factor receptor phosphorylation, insulin-stimulated Akt phosphorylation, oxytocin and lysophosphatidic acid-stimulated extracellular signal-regulated kinase 1 and 2 phosphorylation, myosin light chain phosphorylation, and interleukin-1 induction of IkappaBalpha degradation. The immortalized cells should be useful for a range of studies, including high throughput analyses of the effects of environmental agents on the human myometrium.

17 Reads
  • Source
    • "It is clear that alternate splicing of the MaxiK α-subunit can alter its sensitivity to calcium, voltage, protein phosphorylation and cellular localization: all are methods by which the diversity of K+ channel signaling arises (Soloff et al., 2004; Torres et al., 2007; Aguilar and Mitchell, 2010). This provides a mechanism for fine tuning the channels response to a diverse range of regulatory stimuli. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The onset of human parturition is associated with up-regulation of pro-inflammatory cytokines including tumor necrosis factor (TNF) as well as changes in ion flux, principally Ca2+ and K+, across the myometrial myocytes membrane. Elevation of intra-cellular Ca2+ from the sarcoplasmic reticulum opens L-type Ca2+ channels (LTCCs); in turn this increased calcium level activates MaxiK channels leading to relaxation. While the nature of how this cross-talk is governed remains unclear, our previous work demonstrated that the pro-inflammatory cytokine, TNF, and the histone deacetylase inhibitor, Trichostatin-A (TSA), exerted opposing effects on the expression of the pro-quiescent Gαs gene in human myometrial cells. Consequently, in this study we demonstrate that the different channel splice variants for both MaxiK and LTCC are expressed in primary myometrial myocytes. MaxiK mRNA expression was sensitive to TSA stimulation, this causing repression of the M1, M3, and M4 splice variants. A small but not statistically significantly increase in MaxiK expression was also seen in response to TNF. In contrast to this, expression of LTCC splice variants was seen to be influenced by both TNF and TSA. TNF induced overall increase in total LTCC expression while TSA stimulated a dual effect: causing induction of LTCC exon 8 expression but repressing expression of other LTCC splice variants including that encoding exons 30, 31, 33, and 34, exons 30–34 and exons 40–43. The significance of these observations is discussed herein.
    Frontiers in Physiology 07/2014; 5. DOI:10.3389/fphys.2014.00261 · 3.53 Impact Factor
  • Source
    • "In the absence of hTERT, telomeres are shortened with repeated cell divisions resulting in cells entering a state of senescence then cell death, inferring that telomere length is a possible factor in the determination of the replicative life span of human cells [19]. The ectopic expression of hTERT has been successfully used to immortalise primary cell lines in a range of mammalian species including goat mammary epithelial cells [20], bovine microvascular endothelial cells [21], canine Schwann cells [22], swine kidney epithelial cells [23] and human myometrial [24], retinal pigment epithelial cells and foreskin fibroblasts [25]. In most cases, unlike SV40T immortalisation, this approach results in minimal phenotypic and genotypic changes and therefore preserves more characteristics of the original primary cell line are required. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. Black flying foxes (Pteropus alecto) were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.
    PLoS ONE 12/2009; 4(12):e8266. DOI:10.1371/journal.pone.0008266 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Novel sites of oxytocin receptor expression have recently been detected, including breast cancer cells, bone cells, myoblasts, cardiomyocytes and endothelial cells. These discoveries have greatly expanded the possible spectrum of oxytocin action beyond its classic role as an inducer of uterine contractions and milk ejection. Additional advances in the understanding of oxytocin receptor structure–function relationships, receptor trafficking and novel receptor-linked signaling cascades have made this receptor an attractive model for the study of G-protein-linked receptor function. Finally, the tocolytic efficiency of the oxytocin receptor antagonist atosiban, recently approved for clinical use in Europe, has opened new avenues for the prevention and treatment of preterm labor.
    Results and problems in cell differentiation 02/1999; 26:135-68.
Show more