Article

Nicotine Withdrawal in Adolescent and Adult Rats

Department of Neuropharmacology, CVN-7, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037, USA.
Annals of the New York Academy of Sciences (Impact Factor: 4.31). 07/2004; 1021(1):167-74. DOI: 10.1196/annals.1308.022
Source: PubMed

ABSTRACT Previous research with animal models has demonstrated that adolescent rats display heightened sensitivity to the reinforcing and stimulant effects of nicotine relative to adult rats. Little work has focused on the response of adolescent rats to measures of nicotine withdrawal. To test the hypothesis that adolescent rats may be differentially sensitive to withdrawal relative to their adult counterparts, the present study was designed to compare precipitated withdrawal in adolescent and adult rats following chronic nicotine administration. Adult and adolescent rats were prepared with subcutaneous osmotic minipumps that delivered either saline or nicotine (9 mg/kg per day, salt; N =12 per group). All rats were challenged with the nicotinic receptor antagonist mecamylamine (1.5 mg/kg) on day 7 of chronic nicotine treatment. Twenty minutes after the injection, overt somatic signs of withdrawal (i.e., eye blinks, writhes, body shakes, teeth chatter, gasps, and ptosis) were recorded for 10 min. Adult rats were observed on postnatal day 73-77, and adolescent rats were tested on postnatal day 36-40. The results revealed a robust increase in mecamylamine-induced withdrawal signs in adult rats receiving chronic nicotine relative to adult rats receiving saline. In contrast, mecamylamine did not precipitate withdrawal signs in adolescent rats receiving chronic nicotine. These results indicate that there is decreased sensitivity to the somatic aspects of nicotine withdrawal in adolescent rats that may maximize the reinforcing effects of nicotine during adolescence by minimizing the aversive effects of abstinence.

0 Followers
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tobacco use is associated with lethal diseases in an estimated 440,000 persons in the United States each year (Centers for Disease Control and Prevention, 2005). Successful smoking quit-rates are estimated at 5%-8%, even though a quarter of those attempts included use of smoking-cessation aids (Messer et al., 2008; Henningfield et al., 2009). Current projections are that 16% of the U.S. population-35 million people-will still smoke in 2025, thus more effective smoking-cessation aids are urgently needed (Pollock et al., 2009). The minor tobacco alkaloids may be promising candidates, but further research is necessary (Hoffman & Evans, 2013). Accordingly, we systematically evaluated the minor tobacco alkaloids nornicotine, anabasine, and anatabine using assays of behavioral tolerability, nicotine withdrawal, nicotine discrimination, and nicotine self-administration in male rodents. At doses that were well tolerated, all 3 minor alkaloids dose-dependently engendered robust substitution for a nicotine discriminative stimulus in mice (0.32 mg/kg, IP), and anabasine attenuated nicotine withdrawal. When the ED50 dose of each alkaloid was administered in combination with nicotine, the discriminative stimulus effects of nicotine were not enhanced by any of the alkaloids, and anatabine blunted nicotine's effects. In drug self-administration studies, only nornicotine was self-administered by rats that self-administered nicotine intravenously; anabasine and anatabine had no reinforcing effects. Moreover, prior administration of each of the minor tobacco alkaloids dose-dependently decreased nicotine self-administration. Collectively these results suggest that the minor tobacco alkaloids may substitute for the subjective effects of nicotine and attenuate withdrawal and craving without the abuse liability of nicotine. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
    Experimental and Clinical Psychopharmacology 02/2014; 22(1):9-22. DOI:10.1037/a0035749 · 2.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An important factor contributing to the high relapse rates among smokers is nicotine withdrawal symptoms. Multiple studies suggest that decreased dopamine release in nucleus accumbens plays a key role in withdrawal. However, recent reports showed that long-term nicotine exposure itself also decreases accumbal dopamine release, suggesting that additional mechanisms are involved in withdrawal. Here, we used real-time cyclic voltammetry in brain slices containing the nucleus accumbens to further elucidate the changes in dopamine release linked to nicotine withdrawal. Rats received vehicle or nicotine via the drinking water for 2–3 months. Studies assessing the expression of somatic signs in vehicle-treated, nicotine-treated, and 24-h nicotine withdrawn rats showed that nicotine withdrawal led to a significant increase in somatic signs. Subsequent voltammetry studies showed that long-term nicotine decreased single-pulse-stimulated dopamine release via an interaction at α6β2* receptors. Nicotine withdrawal led to a partial recovery in α6β2* receptor-mediated release. In addition, long-term nicotine treatment alone increased dopamine release paired-pulse ratios and this was partially reversed with nicotine removal. We then evaluated the effect of bath-applied nicotine and varenicline on dopamine release. Nicotine and varenicline both decreased single-pulse-stimulated release in vehicle-treated, nicotine-treated, and nicotine withdrawn rats. However, bath-applied varenicline increased paired-pulse ratios to a greater extent than nicotine during long-term nicotine treatment and after its withdrawal. Altogether these data suggest that nicotine withdrawal is associated with a partial restoration of dopamine release measures to control levels and that varenicline's differential modulation of dopamine release may contribute to its mechanism of action.
    02/2015; 3(1). DOI:10.1002/prp2.105
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Smoking tobacco is highly addictive and a leading preventable cause of death. The main addictive constituent is nicotine; consequently it has been administered to laboratory animals to model tobacco dependence. Despite extensive use, this model might not best reflect the powerful nature of tobacco dependence because nicotine is a weak reinforcer, the pharmacology of smoke is complex and non-pharmacological factors have a critical role. These limitations have led researchers to expose animals to smoke via the inhalative route, or to administer aqueous smoke extracts to produce more representative models. The aim was to review the findings from molecular/behavioural studies comparing the effects of nicotine to tobacco/smoke extracts to determine whether the extracts produce a distinct model. Indeed, nicotine and tobacco extracts yielded differential effects, supporting the initiative to use extracts as a complement to nicotine. Of the behavioural tests, intravenous self-administration experiments most clearly revealed behavioural differences between nicotine and extracts. Thus, future applications for use of this behavioural model were proposed that could offer new insights into tobacco dependence.
    Neuroscience & Biobehavioral Reviews 07/2014; 47. DOI:10.1016/j.neubiorev.2014.07.014 · 10.28 Impact Factor

Preview

Download
2 Downloads
Available from