A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation.

Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
Journal of Proteome Research (Impact Factor: 5.06). 01/2004; 3(3):556-66. DOI: 10.1021/pr034112b
Source: PubMed

ABSTRACT Characterization of glycoproteins using mass spectrometry ranges from determination of carbohydrate-protein linkages to the full characterization of all glycan structures attached to each glycosylation site. In a novel approach to identify N-glycosylation sites in complex biological samples, we performed an enrichment of glycosylated peptides through hydrophilic interaction liquid chromatography (HILIC) followed by partial deglycosylation using a combination of endo-beta-N-acetylglucosaminidases (EC After hydrolysis with these enzymes, a single N-acetylglucosamine (GlcNAc) residue remains linked to the asparagine residue. The removal of the major part of the glycan simplifies the MS/MS fragment ion spectra of glycopeptides, while the remaining GlcNAc residue enables unambiguous assignment of the glycosylation site together with the amino acid sequence. We first tested our approach on a mixture of known glycoproteins, and subsequently the method was applied to samples of human plasma obtained by lectin chromatography followed by 1D gel-electrophoresis for determination of 62 glycosylation sites in 37 glycoproteins.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Tris(hydroxymethyl)aminomethane (Tris) is one of the most frequently used buffer ingredients. Among other things, it is recommended and is usually used for lectin-based affinity enrichment of glycopeptides. Here we report that sialic acid, a common 'capping' unit in both N- and O-linked glycans may react with this chemical, and this side reaction may compromise glycopeptide identification when ETD spectra are the only MS/MS data used in the database search. We show that the modification may alter N- as well as O-linked glycans, the Tris-derivative is still prone to fragmentation both in 'beam-type' CID (HCD) and ETD experiments, at the same time-since the acidic carboxyl group was 'neutralized'-it will display a different retention time than its unmodified counterpart. We also suggest solutions that-when incorporated into existing search engines-may significantly improve the reliability of glycopeptide assignments.
    Journal of the American Society for Mass Spectrometry 03/2014; · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glycosylation of membrane proteins plays an important role in cellular behaviors such as cell-cell interaction, immunologic recognition and cell signaling. However, the effective extraction of membrane proteins, the selective isolation of glycopeptides and the mass spectrometric characterization of glycosylation are challenging with current analytical techniques. In this study, a systematic approach was developed which combined: an integrated hydrophilic interaction chromatography solid phase interaction (HILIC SPE) for simultaneous detergent removal and glycopeptide enrichment, and mass spectrometric identification of both protein N-glycosylation sites and site-specific glycan composition. The HILIC SPE conditions were optimized to enable the use of a high concentration of strong detergents, such as SDS and Triton X-100 and to dissolve highly hydrophobic membrane proteins, thus increasing the yield of membrane protein extraction. We illustrated the performance of this approach for the study of membrane protein glycosylation from human embryonic kidney cell lines (HEK 293T). 200μg total protein digest was processed using this approach, leading to the identification of 811 N-glycosylation sites from 567 proteins within two experimental replicates. Furthermore, 177 glycopeptides representing 82 N-glycosites with both glycan composition and peptide sequence were identified by high energy collision dissociation. A method for systematic characterizing of cell membrane glycosylation has been developed in this manuscript. It is comprised of an integrated hydrophilic interaction chromatography solid phase extraction for the simultaneous detergent removal and intact glycopeptide enrichment. This HILIC SPE significantly increased the efficiency and sensitivity for glycosylation analysis and was combined with high energy collision dissociation to characterize site-specific N-glycosylation from HEK293 cell membrane. Totally 811 N-glycosylation sites from 567 proteins were identified and 177 intact glycopeptides with both glycan composition and peptides sequence were characterized, which provided a solution for site-specific N-glycosylation characterization of membrane.
    Journal of proteomics 04/2014; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC-MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC-MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC-MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.
    Biochimica et Biophysica Acta 05/2014; · 4.66 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014