Article

Aptamer-based sensor arrays for the detection and quantitation of proteins.

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, USA.
Analytical Chemistry (Impact Factor: 5.7). 08/2004; 76(14):4066-75. DOI:10.1021/ac049858n
Source: PubMed

ABSTRACT Aptamer biosensors have been immobilized on beads, introduced into micromachined chips on the electronic tongue sensor array, and used for the detection and quantitation of proteins. Aptamer chips could detect proteins in both capture and sandwich assay formats. Unlike most protein-based arrays, the aptamer chips could be stripped and reused multiple times. The aptamer chips proved to be useful for screening aptamers from in vitro selection experiments and for sensitively quantitating the biothreat agent ricin.

0 0
 · 
0 Bookmarks
 · 
108 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The term hydrogel describes a type of soft and wet material formed by cross-linked hydrophilic polymers. The distinct feature of hydrogels is their ability to absorb a large amount of water and swell. The properties of a hydrogel are usually determined by the chemical properties of their constituent polymer(s). However, a group of hydrogels, called "smart hydrogels," changes properties in response to environmental changes or external stimuli. Recently, DNA or DNA-inspired responsive hydrogels have attracted considerable attention in construction of smart hydrogels because of the intrinsic advantages of DNA. As a biological polymer, DNA is hydrophilic, biocompatible, and highly programmable by Watson-Crick base pairing. DNA can form a hydrogel by itself under certain conditions, and it can also be incorporated into synthetic polymers to form DNA-hybrid hydrogels. Functional DNAs, such as aptamers and DNAzymes, provide additional molecular recognition capabilities and versatility. In this Review, DNA-based hydrogels are discussed in terms of their stimulus response, as well as their applications.
    Macromolecular Rapid Communications 07/2013; · 4.93 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Here, we report a double-stranded, dual-anchored, fluorescent aptamer on reduced graphene oxide (rGO) for the sensitive, selective, and speedy detection of a target protein in biological samples. This nano detector is composed of a target protein-specific fluorescent aptamer with BHQ1 as one anchoring moiety that forms double-stranded sequences with a complementary oligonucleotide sequence with BHQ1 as the other anchoring moiety, anchored to rGO nanosheets. The double-stranded and dual-anchored aptamer on rGO nanosheets (DAGO) exhibited 7.3-fold higher fluorescence intensities compared to a single-stranded, single-anchored fluorescent aptamer on rGO. As a model target protein, interferon-γ was used. DAGO detected the target protein, with linearity over a five-orders-of-magnitude concentration range (0.1 ng/ml-10 μg/ml) in buffer and human serum. DAGO was highly specific for the target protein, exhibiting little changes in fluorescence intensity in response to the non-target proteins, interleukin-2 and tumor necrosis factor-α. Moreover, DAGO allowed rapid quantification of the target protein in human immunodeficiency virus-positive patient serum samples. DAGO-based detection was complete in less than 10 min. Our results indicate that the DAGO provides new opportunities for the rapid and specific detection of target proteins in biological samples and could be widely applied to quantitate various target proteins by replacing the aptamer sequences.
    Biomaterials 01/2014; · 7.60 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Aptamers emerged over 20 years ago as a class of nucleic acids able to recognize specific targets. Today, aptamer-related studies constitute a large and important field of biotechnology. Functional oligonucleotides have proved to be a versatile tool in biomedical research due to the ease of synthesis, a wide range of potentially recognized molecular targets and the simplicity of selection. Similarly to antibodies, aptamers can be used to detect or isolate specific molecules, as well as to act as targeting and therapeutic agents. In this review we present different approaches to aptamers application in nanobiotechnology, diagnostics and medicine.
    Biotechnology advances 04/2013; · 8.25 Impact Factor

Full-text (2 Sources)

View
41 Downloads
Available from
Nov 15, 2012