Activation of brain areas in rat following warm and cold ambient exposure.

Laboratory of Neuromorphology, Department of Anatomy, Medical Faculty of Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary.
Neuroscience (Impact Factor: 3.12). 02/2004; 127(2):385-97. DOI: 10.1016/j.neuroscience.2004.05.016
Source: PubMed

ABSTRACT Environmental thermal stimuli result in specific and coordinated thermoregulatory response in homeothermic animals. Warm exposure activates numerous brain areas within the cortex, hypothalamus, pons and medulla oblongata. We identified these thermosensitive cell groups in the medulla and pons that were suggested but not outlined by previous physiological studies. Using Fos immunohistochemistry, we localized all the nuclei and cell groups in the rat brain that were activated by warm and cold ambient exposure. These neurons located in the hypothalamus and the brainstem, are part of a network responsible for the thermospecific response elicited by thermal stress. Comparison of the distribution of Fos-immunoreactive cells throughout the rat brain revealed topographical differences between the patterns of activated cells following warm and cold environmental exposure. Among several brain regions, warm exposure elicited c-fos expression specifically in the ventrolateral part of the medial preoptic area, the central subdivision of the lateral parabrachial nucleus and the caudal part of the peritrigeminal nucleus, whereas cold stress resulted in c-fos expression in the ventromedial part of the medial preoptic area, the external subdivision of the lateral parabrachial nucleus and the rostral part of the peritrigeminal nucleus. These neurons are part of a network coordinating specific response to warm or cold exposure. The topographical differences suggest that well-defined cell groups and subdivisions of nuclei are responsible for the specific physiological (endocrine, autonomic and behavioral) changes observed in different thermal environment.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis.
    Frontiers in Neuroscience 01/2014; 8:14.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite affecting millions of individuals, the etiology of hot flushes remains unknown. Here we review the physiology of hot flushes, CNS pathways regulating heat-dissipation effectors, and effects of estrogen on thermoregulation in animal models. Based on the marked changes in hypothalamic kisspeptin, neurokinin B and dynorphin (KNDy) neurons in postmenopausal women, we hypothesize that KNDy neurons play a role in the mechanism of flushes. In the rat, KNDy neurons project to preoptic thermoregulatory areas that express the neurokinin 3 receptor (NK3R), the primary receptor for NKB. Furthermore, activation of NK3R in the median preoptic nucleus, part of the heat-defense pathway, reduces body temperature. Finally, ablation of KNDy neurons reduces cutaneous vasodilatation and partially blocks the effects of estrogen on thermoregulation. These data suggest that arcuate KNDy neurons relay estrogen signals to preoptic structures regulating heat-dissipation effectors, supporting the hypothesis that KNDy neurons participate in the generation of flushes.
    Frontiers in Neuroendocrinology 07/2013; · 7.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermogenesis, the production of heat energy, is the specific, neurally regulated, metabolic function of brown adipose tissue (BAT) and contributes to the maintenance of body temperature during cold exposure and to the elevated core temperature during several behavioral states, including wakefulness, the acute phase response (fever), and stress. BAT energy expenditure requires metabolic fuel availability and contributes to energy balance. This review summarizes the functional organization and neurochemical influences within the CNS networks governing the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolically driven alterations in BAT thermogenesis and energy expenditure that contribute to overall energy homeostasis.
    Cell metabolism 03/2014; · 17.35 Impact Factor