Article

Parathyroid hormone-related protein: an essential physiological regulator of adult bone mass.

Endocrinology (Impact Factor: 4.72). 09/2004; 145(8):3551-3. DOI: 10.1210/en.2004-0509
Source: PubMed
0 Bookmarks
 · 
76 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Si-doped hydroxyapatite (Si-HA) is a suitable ceramic for the controlled release of agents to improve bone repair. We recently showed that parathyroid hormone-related protein (PTHrP) (107-111) (osteostatin) has remarkable osteogenic features in various in vitro and in vivo systems. Fibroblast growth factor (FGF)-2 modulates osteoblastic function and induces angiogenesis, and can promote osteoblast adhesion and proliferation after immobilization on Si-HA. In the present study we examined whether osteostatin might improve the biological efficacy of FGF-2-coated Si-HA in osteoblastic MC3T3-E1 cells in vitro. We found that Si-HA/FGF-2 in the presence or absence of osteostatin (100 nM) similarly increased cell growth (by about 50%). However, addition of the latter peptide to Si-HA/FGF-2 significantly enhanced gene expression of Runx2, osteocalcin, vascular endothelial growth factor (VEGF) and the VEGF receptors 1 and 2, without significantly affecting that of FGF receptors in these cells. Moreover, secreted VEGF in the MC3T3-E1 cell conditioned medium, which induced the proliferation of pig endothelial-like cells, was also enhanced by these combined factors. The synergistic action of osteostatin and Si-HA/FGF-2 on the VEGF system was abrogated by a mitogen-activated protein kinase inhibitor (U0126) and by the calcium antagonist verapamil. This action was related to an enhancement of alkaline phosphatase activity and matrix mineralization in MC3T3-E1 cells, and also in primary human osteoblastic cells. These in vitro data show that osteostatin increases the osteogenic efficacy of a Si-HA/FGF-2 biomaterial by a mechanism involving mitogen-activated protein kinases and intracellular Ca(2+). These findings provide an attractive strategy for bone tissue engineering.
    Acta biomaterialia 04/2012; 8(7):2770-7. · 5.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An age-related bone loss occurs, apparently associated with the concomitant increase in an oxidative stress situation. However, the underlying mechanisms of age-related osteopenia are ill defined since these studies are time consuming and require the use of many animals (mainly rodents). Here, we aimed to characterize for the first time the bone status of prematurely aging mice (PAM), which exhibit an increased oxidative stress. Tibiae from adult (6 months) PAM show an increase in bone mineral density (BMD) and bone mineral content (assessed by bone densitometry) versus those in their normal counterparts (non-prematurely aging mice, NPAM) and similarly decreased in both kinds of mouse with age. However, at this bone site, trabecular BMD (determined by μ-computerized tomography) was similar in both adult PAM and old (18 months) NPAM. Femurs from these groups of mice present an increase in oxidative stress, inflammation, osteoclastogenic, and adipogenic markers, but a decrease in the gene expression of osteoblastic differentiation markers and of the Wnt/β-catenin pathway. Our findings show that adult PAM recapitulate various age-related bone features, and thus are a suitable model for premature bone senescence studies.
    Age 01/2012; · 6.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The parathyroid hormone (PTH) receptor type 1 (PTHR), a G protein-coupled receptor (GPCR), transmits signals to two hormone systems-PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine-to regulate different biological processes. PTHR responds to these hormonal stimuli by activating heterotrimeric G proteins, such as G(S) that stimulates cAMP production. It was thought that the PTHR, as for all other GPCRs, is only active and signals through G proteins on the cell membrane, and internalizes into a cell to be desensitized and eventually degraded or recycled. Recent studies with cultured cell and animal models reveal a new pathway that involves sustained cAMP signaling from intracellular domains. Not only do these studies challenge the paradigm that cAMP production triggered by activated GPCRs originates exclusively at the cell membrane but they also advance a comprehensive model to account for the functional differences between PTH and PTHrP acting through the same receptor.
    Cellular and Molecular Life Sciences CMLS 01/2011; 68(1):1-13. · 5.62 Impact Factor