Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network.

Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore.
Molecular Biology of the Cell (Impact Factor: 4.55). 11/2004; 15(10):4426-43. DOI: 10.1091/mbc.E03-12-0872
Source: PubMed

ABSTRACT The precise cellular function of Arl1 and its effectors, the GRIP domain Golgins, is not resolved, despite our recent understanding that Arl1 regulates the membrane recruitment of these Golgins. In this report, we describe our functional study of Golgin-97. Using a Shiga toxin B fragment (STxB)-based in vitro transport assay, we demonstrated that Golgin-97 plays a role in transport from the endosome to the trans-Golgi network (TGN). The recombinant GRIP domain of Golgin-97 as well as antibodies against Golgin-97 inhibited the transport of STxB in vitro. Membrane-associated Golgin-97, but not its cytosolic pool, was required in the in vitro transport assay. The kinetic characterization of inhibition by anti-Golgin-97 antibody in comparison with anti-Syntaxin 16 antibody established that Golgin-97 acts before Syntaxin 16 in endosome-to-TGN transport. Knock down of Golgin-97 or Arl1 by their respective small interference RNAs (siRNAs) also significantly inhibited the transport of STxB to the Golgi in vivo. In siRNA-treated cells with reduced levels of Arl1, internalized STxB was instead distributed peripherally. Microinjection of Golgin-97 antibody led to the fragmentation of Golgi apparatus and the arrested transport to the Golgi of internalized Cholera toxin B fragment. We suggest that Golgin-97 may function as a tethering molecule in endosome-to-TGN retrograde traffic.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Rab GTPases are key regulators of intracellular membrane traffic acting through their effector molecules. Rabaptin-5 is a Rab5 effector in early endosome fusion and connects Rab5- and Rab4-positive membrane compartments owing to its ability to interact with Rab4 GTPase. Recent studies showed that Rabaptin-5 transcript is subjected to extensive alternative splicing, thus resulting in expression of Rabaptin-5 isoforms mostly bearing short deletions in the polypeptide chain. As interactions of a Rab GTPase with different effectors lead to different responses, functional characterization of Rabaptin-5 isoforms becomes an attractive issue. Indeed, it was shown that Rab GTPase effector properties of Rabaptin-5 and its α and δ isoforms are different. This work focused on another Rabaptin-5 isoform, Rabaptin-5γ. Despite its ability to interact with Rab5, endogenously produced Rabaptin-5γ was absent from early endosomes. Rather, it was found to be tightly associated with trans-Golgi network and partially localized to a Rab4-positive membrane compartment. The revealed intracellular localization of Rabaptin-5γ indicates that it is not involved in Rab5-driven events; rather, it functions in other membrane transport steps. Our study signifies the role of alternative splicing in determination of functional activities of Rab effector molecules.
    Biochemistry (Moscow) 09/2014; 79(9):856-64. · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane trafficking depends on transport vesicles and carriers docking and fusing with the target organelle for the delivery of cargo. Membrane tethers and small guanosine triphosphatases (GTPases) mediate the docking of transport vesicles/carriers to enhance the efficiency of the subsequent SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-mediated fusion event with the target membrane bilayer. Different classes of membrane tethers and their specific intracellular location throughout the endomembrane system are now well defined. Recent biochemical and structural studies have led to a deeper understanding of the mechanism by which membrane tethers mediate docking of membrane carriers as well as an appreciation of the role of tethers in coordinating the correct SNARE complex and in regulating the organization of membrane compartments. This review will summarize the properties and roles of membrane tethers of both secretory and endocytic systems.
    F1000prime reports. 09/2014; 6:74.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: p230/golgin-245 is a trans-Golgi coiled-coil protein that is known to participate in regulatory transport from the trans-Golgi network (TGN) to the cell surface. We investigated the role of p230 and its interacting protein, microtubule actin crosslinking protein 1 (MACF1), in amino acid starvation-induced membrane transport. p230 or MACF1 knock-down (KD) cells failed to increase the autophagic flow rate and the number of microtubule-associated protein 1 light chain 3 (LC3)-positive puncta under starvation conditions. Loss of p230 or MACF1 impaired mAtg9 recruitment to peripheral phagophores from the TGN, which was observed in the early step of autophagosome formation. Overexpression of the p230-binding domain of MACF1 resulted in the inhibition of mAtg9 trafficking in starvation conditions as in p230-KD or MACF1-KD cells. These results indicate that p230 and MACF1 cooperatively play an important role in the formation of phagophore through starvation-induced transport of mAtg9-containing membranes from the TGN. In addition, p230 itself was detected in autophagosomes/autolysosome with p62 or LC3 during autophagosome biogenesis. Thus, p230 is an important molecule in phagophore formation, although it remains unclear whether p230 has any role in late steps of autophagy. Copyright © 2014. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 11/2014; · 2.28 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014