Maintenance of normoglycemia during cardiac surgery

Department of Anesthesia, McGill University, Royal Victoria Hospital, Room S5.05, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1.
Anesthesia & Analgesia (Impact Factor: 3.42). 09/2004; 99(2):319-24, table of contents. DOI: 10.1213/01.ANE.0000121769.62638.EB
Source: PubMed

ABSTRACT We used the hyperinsulinemic normoglycemic clamp technique, i.e., infusion of insulin at a constant rate combined with dextrose titrated to clamp blood glucose at a specific level, to preserve normoglycemia during elective cardiac surgery. Ten nondiabetic and seven diabetic patients entered the clamp protocols. Perioperative glucose control was also assessed in 19 nondiabetic and 11 diabetic patients (control group) receiving a conventional insulin infusion sliding scale. In patients of the clamp group, a priming bolus of insulin (2 U) was started before the induction of anesthesia followed by infusions of insulin at 5 mU. kg(-1). min(-1) and of variable amounts of dextrose. Arterial blood glucose was measured every 5 min in the clamp group and every 20 min in the control group. Control of normoglycemia was defined as > or =95% of the glucose levels within 4.0-6.0 mmol/L. Glucose concentration was recorded before surgery, 15 min before cardiopulmonary bypass (CPB), during early and late CPB, and at sternal closure. Patients of the control group became progressively hyperglycemic during surgery (late CPB; nondiabetics, 9.0 +/- 3.2 mmol/L; diabetics, 10.1 +/- 3.6 mmol/L), whereas normoglycemia was achieved in the study group (late CPB; nondiabetics, 5.5 +/- 0.7 mmol/L; diabetics, 4.9 +/- 0.6 mmol/L; P < 0.05 versus control group). In conclusion, it seems that normal blood glucose concentration during open heart surgery can be reliably maintained in nondiabetic and diabetic patients by using the hyperinsulinemic normoglycemic clamp technique.

Download full-text


Available from: Baqir Qizilbash, Jan 06, 2014
  • Source
    • "The same general features hold true for the glucose diffusion coefficient D tissue gluc , which has specifically been determined for the human skin [64]. The glucose concentration at the basal layer U bound gluc has been fixed to values that are normal for blood [8]. However, it should be noted that in reality the blood glucose concentration may vary significantly – for example after a meal. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to grasp the features arising from cellular discreteness and individuality, in large parts of cell tissue modelling agent-based models are favoured. The subclass of off-lattice models allows for a physical motivation of the intercellular interaction rules. We apply an improved version of a previously introduced off-lattice agent-based model to the steady-state flow equilibrium of skin. The dynamics of cells is determined by conservative and drag forces, supplemented with delta-correlated random forces. Cellular adjacency is detected by a weighted Delaunay triangulation. The cell cycle time of keratinocytes is controlled by a diffusible substance provided by the dermis. Its concentration is calculated from a diffusion equation with time-dependent boundary conditions and varying diffusion coefficients. The dynamics of a nutrient is also taken into account by a reaction-diffusion equation. It turns out that the analysed control mechanism suffices to explain several characteristics of epidermal homoeostasis formation. In addition, we examine the question of how in silico melanoma with decreased basal adhesion manage to persist within the steady-state flow equilibrium of the skin. Interestingly, even for melanocyte cell cycle times being substantially shorter than for keratinocytes, tiny stochastic effects can lead to completely different outcomes. The results demonstrate that the understanding of initial states of tumour growth can profit significantly from the application of off-lattice agent-based models in computer simulations.
    Journal of Theoretical Biology 09/2007; 247(3):554-73. DOI:10.1016/j.jtbi.2007.03.023 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Réanimation médico-chirurgicale -Hôpital Saint-Roch, 5 rue Pierre Dévoluy. Faculté de Médecine de Nice Sophia-Antipolis. 06000 NICE -FRANCE Tel : 00 33 (0)4 92 03 33 00, Fax: 00 33 (0)4 92 03 35 58, e-mail Introduction Le diabète est un problème de santé publique dont l'incidence augmente régulièrement. Cette pathologie est responsable ou associée à un grand nombre de comorbidités affectant des grandes fonctions vitales. La prise en charge anesthésique périopératoire de ce type de patient représente un véritable challenge. L'évaluation préopératoire, la conduite de l'anesthésie et la surveillance postopératoire posent des problèmes spécifiques. Leur connaissance permet d'améliorer la prise en charge de ces patients. 1. Le diabète : rappels 1. 1. Épidémiologie L'incidence du diabète est de nos jours de 170 millions de personnes dans le monde. L'incidence de cette pathologie augmente régulièrement au cours des dernières années en grande partie à cause des changements de mode de vie. Cette tendance touche les deux types de diabète [1, 2]. L'Organisation Mondiale de la Santé (OMS) estime que cette incidence sera de 5,4 % de la population mondiale en 2025 soit 300 millions de personnes. En France, 3,4 % de la population présente un diabète [3] et 3,06 % sont traités pour cela [4]. La prévalence du diabète type 2 est de 90 % des diabétiques contre 10 à 15 % de diabétiques type 1. 1. 2. Critères diagnostiques Les critères diagnostiques du diabète ont été modifiés en 1997 par l'American Diabetes Association et l'OMS et révisés en 2003 [5]. On distingue ainsi le diabète des anomalies de la glycorégulation (tableau 1).
  • Source
Show more