Article

Visual word recognition: the first half second.

Division of Psychology, School of Biology, University of Newcastle, UK.
NeuroImage (Impact Factor: 6.13). 09/2004; 22(4):1819-25. DOI: 10.1016/j.neuroimage.2004.05.004
Source: OAI

ABSTRACT We used magnetoencephalography (MEG) to map the spatiotemporal evolution of cortical activity for visual word recognition. We show that for five-letter words, activity in the left hemisphere (LH) fusiform gyrus expands systematically in both the posterior-anterior and medial-lateral directions over the course of the first 500 ms after stimulus presentation. Contrary to what would be expected from cognitive models and hemodynamic studies, the component of this activity that spatially coincides with the visual word form area (VWFA) is not active until around 200 ms post-stimulus, and critically, this activity is preceded by and co-active with activity in parts of the inferior frontal gyrus (IFG, BA44/6). The spread of activity in the VWFA for words does not appear in isolation but is co-active in parallel with spread of activity in anterior middle temporal gyrus (aMTG, BA 21 and 38), posterior middle temporal gyrus (pMTG, BA37/39), and IFG.

0 Bookmarks
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has recently been suggested that dyslexia may manifest as a deficit in the neural synchrony underlying language-based codes (Goswami, 2011), such that the phonological deficits apparent in dyslexia occur as a consequence of poor synchronisation of oscillatory brain signals to the sounds of language. There is compelling evidence to support this suggestion, and it provides an intriguing new development in understanding the aetiology of dyslexia. It is undeniable that dyslexia is associated with poor phonological coding, however, reading is also a visual task, and dyslexia has also been associated with poor visual coding, particularly visuo-spatial sensitivity. It has been hypothesized for some time that specific frequency oscillations underlie visual perception. Although little research has been done looking specifically at dyslexia and cortical frequency oscillations, it is possible to draw on converging evidence from visual tasks to speculate that similar deficits could occur in temporal frequency oscillations in the visual domain in dyslexia. Thus, here the plausibility of a visual correlate of the Temporal Sampling Framework is considered, leading to specific hypotheses and predictions for future research. A common underlying neural mechanism in dyslexia, may subsume qualitatively different manifestations of reading difficulty, which is consistent with the heterogeneity of the disorder, and may open the door for a new generation of exciting research.
    Frontiers in Human Neuroscience 01/2013; 7:933. · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding Chinese reading is important for identifying the universal aspects of reading, separated from those aspects that are specific to alphabetic writing or to English in particular. Chinese and alphabetic writing make different demands on reading and learning to read, despite reading procedures and their supporting brain networks that are partly universal. Learning to read accommodates the demands of a writing system through the specialization of brain networks that support word identification. This specialization increases with reading development, leading to differences in the brain networks for alphabetic and Chinese reading. We suggest that beyond reading procedures that are partly universal and partly writing-system specific, functional reading universals arise across writing systems in their adaptation to human cognitive abilities.
    Scientific Studies of Reading 01/2013; 17(1):5-21. · 1.86 Impact Factor
  • Source
    The Fluent Brain, Edited by A. Khateb and I.B. Kochova, 01/2015; Springer-Verlag.

Full-text (3 Sources)

Download
77 Downloads
Available from
May 29, 2014