Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions.

Laboratory of Developmental Genetics and Imprinting, Developmental Genetics Programme, The Babraham Institute, Cambridge CB2 4AT, UK.
Human Molecular Genetics (Impact Factor: 7.69). 03/2003; 12(3):295-305. DOI: 10.1093/hmg/ddg022
Source: PubMed

ABSTRACT Imprinted genes and their control elements occur in clusters in the mammalian genome and carry epigenetic modifications. Observations from imprinting disorders suggest that epigenetic modifications throughout the clusters could be under regional control. However, neither the elements that are responsible for regional control, nor its developmental timing, particularly whether it occurs in the germline or postzygotically, are known. Here we examine regional control of DNA methylation in the imprinted Igf2-H19 region in the mouse. Paternal germline specific methylation was reprogrammed after fertilization in two differentially methylated regions (DMRs) in Igf2, and was reestablished after implantation. Using a number of knockout strains in the region, we found that the DMRs themselves are involved in regional coordination in a hierarchical fashion. Thus the H19 DMR was needed on the maternal allele to protect the Igf2 DMRs 1 and 2 from methylation, and Igf2 DMR1 was needed to protect DMR2 from methylation. This regional coordination occurred exclusively after fertilization during somatic development, and did not involve linear spreading of DNA methylation, suggesting a model in which long-range chromatin interactions are involved in regional epigenetic coordination. These observations are likely to be relevant to other gene clusters in which epigenetic regulation plays a role, and in pathological situations in which epigenetic regulation is disrupted.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differential distribution of DNA methylation on the parental alleles of imprinted genes distinguishes the alleles from each other and dictates their parent of origin-specific expression patterns. While differential DNA methylation at primary imprinting control regions is inherited via the gametes, additional allele-specific DNA methylation is acquired at secondary sites during embryonic development and plays a role in the maintenance of genomic imprinting. The precise mechanisms by which this somatic DNA methylation is established at secondary sites are not well defined and may vary as methylation acquisition at these sites occurs at different times for genes in different imprinting clusters.
    Epigenetics & Chromatin 01/2014; 7:9. · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is an epigenetic phenomenon in which genes are expressed monoallelically in a parent-of-origin-specific manner. Each chromosome is imprinted with its parental identity. Here we will discuss the nature of this imprinting mark. DNA methylation has a well-established central role in imprinting, and the details of DNA methylation dynamics and the mechanisms that target it to imprinted loci are areas of active investigation. However, there is increasing evidence that DNA methylation is not solely responsible for imprinted expression. At the same time, there is growing appreciation for the contributions of post-translational histone modifications to the regulation of imprinting. The integration of our understanding of these two mechanisms is an important goal for the future of the imprinting field. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
    Biochimica et Biophysica Acta 12/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differential methylation between the two alleles of a gene has been observed at imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies and hydatidiform moles, using a combination of whole genome bisulphite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as identifying 21 novel loci harbouring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically-activated oocytes, individual blastomeres and blastocysts to identifying primary DMRs and reveal the extent of reprograming during pre-implantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.
    Genome Research 01/2014; · 14.40 Impact Factor

Full-text (2 Sources)

Available from
Jun 4, 2014

Similar Publications