Article

Epigenetic modifications in an imprinting cluster are controlled by a hierarchy of DMRs suggesting long-range chromatin interactions.

Laboratory of Developmental Genetics and Imprinting, Developmental Genetics Programme, The Babraham Institute, Cambridge CB2 4AT, UK.
Human Molecular Genetics (Impact Factor: 7.69). 03/2003; 12(3):295-305. DOI: 10.1093/hmg/ddg022
Source: PubMed

ABSTRACT Imprinted genes and their control elements occur in clusters in the mammalian genome and carry epigenetic modifications. Observations from imprinting disorders suggest that epigenetic modifications throughout the clusters could be under regional control. However, neither the elements that are responsible for regional control, nor its developmental timing, particularly whether it occurs in the germline or postzygotically, are known. Here we examine regional control of DNA methylation in the imprinted Igf2-H19 region in the mouse. Paternal germline specific methylation was reprogrammed after fertilization in two differentially methylated regions (DMRs) in Igf2, and was reestablished after implantation. Using a number of knockout strains in the region, we found that the DMRs themselves are involved in regional coordination in a hierarchical fashion. Thus the H19 DMR was needed on the maternal allele to protect the Igf2 DMRs 1 and 2 from methylation, and Igf2 DMR1 was needed to protect DMR2 from methylation. This regional coordination occurred exclusively after fertilization during somatic development, and did not involve linear spreading of DNA methylation, suggesting a model in which long-range chromatin interactions are involved in regional epigenetic coordination. These observations are likely to be relevant to other gene clusters in which epigenetic regulation plays a role, and in pathological situations in which epigenetic regulation is disrupted.

0 Bookmarks
 · 
49 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differential distribution of DNA methylation on the parental alleles of imprinted genes distinguishes the alleles from each other and dictates their parent of origin-specific expression patterns. While differential DNA methylation at primary imprinting control regions is inherited via the gametes, additional allele-specific DNA methylation is acquired at secondary sites during embryonic development and plays a role in the maintenance of genomic imprinting. The precise mechanisms by which this somatic DNA methylation is established at secondary sites are not well defined and may vary as methylation acquisition at these sites occurs at different times for genes in different imprinting clusters.
    Epigenetics & Chromatin 01/2014; 7:9. · 4.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to characterise the methylation pattern in a CpG island of the IGF2 gene in cumulus cells from 1-3 mm and ≥ 8.0 mm follicles and to evaluate the effects of in vitro maturation on this pattern. Genomic DNA was treatment with sodium bisulphite. Nested PCR using bisulphite-treated DNA was performed, and DNA methylation patterns have been characterised. There were no differences in the methylation pattern among groups (P > 0.05). Cells of pre-IVM and post-IVM from small follicles showed methylation levels of 78.17 ± 14.11 % and 82.93±5.86 %, respectively, and those from large follicles showed methylation levels of 81.81 ± 10.40 % and 79.64 ± 13.04 %, respectively. Evaluating only the effect of in vitro maturation, cells of pre-IVM and post-IVM COCs showed methylation levels of 80.17 ± 12.01 % and 81.19 ± 10.15 %. In conclusion, the methylation levels of the cumulus cells of all groups were higher than that expected from the imprinted pattern of somatic cells. As the cumulus cells from the pre-IVM follicles were not subjected to any in vitro manipulation, the hypermethylated pattern that was observed may be the actual physiological methylation pattern for this particular locus in these cells. Due the importance of DNA methylation in oogenesis, and to be a non-invasive method for determining oocyte quality, the identification of new epigenetic markers in cumulus cells has great potential to be used to support reproductive biotechniques in humans and other mammals.
    Journal of Assisted Reproduction and Genetics 10/2013; · 1.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is an epigenetic phenomenon in which genes are expressed monoallelically in a parent-of-origin-specific manner. Each chromosome is imprinted with its parental identity. Here we will discuss the nature of this imprinting mark. DNA methylation has a well-established central role in imprinting, and the details of DNA methylation dynamics and the mechanisms that target it to imprinted loci are areas of active investigation. However, there is increasing evidence that DNA methylation is not solely responsible for imprinted expression. At the same time, there is growing appreciation for the contributions of post-translational histone modifications to the regulation of imprinting. The integration of our understanding of these two mechanisms is an important goal for the future of the imprinting field. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
    Biochimica et Biophysica Acta 12/2013; · 4.66 Impact Factor

Full-text (2 Sources)

View
12 Downloads
Available from
Jun 4, 2014

Similar Publications