Glutamate as a therapeutic target in psychiatric disorders.

Program in Cognitive Neuroscience and Schizophrenia, Nathan Kline Institute for Psychiatric Research/New York University School of Medicine, Orangeburg, NY 10962, USA.
Molecular Psychiatry (Impact Factor: 15.15). 12/2004; 9(11):984-97, 979. DOI: 10.1038/
Source: PubMed

ABSTRACT Glutamate is the primary excitatory neurotransmitter in the mammalian brain. Glutamatergic neurotransmission may be modulated at multiple levels, only a minority of which are currently being exploited for pharmaceutical development. Ionotropic receptors for glutamate are divided into N-methyl-D-aspartate receptor (NMDAR) and AMPA receptor subtypes. NMDAR have been implicated in the pathophysiology of schizophrenia. The glycine modulatory site of the NMDAR is currently a favored therapeutic target, with several modulatory agents currently undergoing clinical development. Of these, the full agonists glycine and D-serine have both shown to induce significant, large effect size reductions in persistent negative and cognitive symptoms when added to traditional or newer atypical antipsychotics in double-blind, placebo-controlled clinical studies. Glycine (GLYT1) and small neutral amino-acid (SNAT) transporters, which regulate glycine levels, represent additional targets for drug development, and may represent a site of action of clozapine. Brain transporters for D-serine have recently been described. Metabotropic glutamate receptors are positively (Group I) or negatively (Groups II and III) coupled to glutamatergic neurotransmission. Metabotropic modulators are currently under preclinical development for neuropsychiatric conditions, including schizophrenia, depression and anxiety disorders. Other conditions for which glutamate modulators may prove effective include stroke, epilepsy, Alzheimer disease and PTSD.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has fast-acting antidepressant activities and is used for major depressive disorder (MDD) patients who show treatment resistance towards drugs of the selective serotonin reuptake inhibitor (SSRI) type. In order to better understand Ketamine's mode of action, a prerequisite for improved drug development efforts, a detailed understanding of the molecular events elicited by the drug is mandatory. In the present study we have carried out a time-dependent hippocampal metabolite profiling analysis of mice treated with Ketamine. After a single injection of Ketamine, our metabolomics data indicate time-dependent metabolite level alterations starting already after 2 h reflecting the fast antidepressant effect of the drug. In silico pathway analyses revealed that several hippocampal pathways including glycolysis/gluconeogenesis, pentose phosphate pathway and citrate cycle are affected, apparent by changes not only in metabolite levels but also connected metabolite level ratios. The results show that a single injection of Ketamine has an impact on the major energy metabolism pathways. Furthermore, seven of the identified metabolites qualify as biomarkers for the Ketamine drug response.
    Translational Psychiatry 11/2014; 4:e481. DOI:10.1038/tp.2014.119 · 4.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolomics was applied to a C57BL/6N mouse model of chronic unpredictable mild stress (CMS). Such mice were treated with two antidepressants from different categories: fluoxetine and imipramine. Metabolic profiling of the hippocampus was performed using gas chromatography-mass spectrometry analysis on samples prepared under optimized conditions, followed by principal component analysis, partial least squares-discriminant analysis, and pair-wise orthogonal projections to latent structures discriminant analyses. Body weight measurement and behavior tests including an open field test and the forced swimming test were completed with the mice as a measure of the phenotypes of depression and antidepressive effects. As a result, 23 metabolites that had been differentially expressed among the control, CMS, and antidepressant-treated groups demonstrated that amino acid metabolism, energy metabolism, adenosine receptors, and neurotransmitters are commonly perturbed by drug treatment. Potential predictive markers for treatment effect were identified: myo-inositol for fluoxetine and lysine and oleic acid for imipramine. Collectively, the current study provides insights into the molecular mechanisms of the antidepressant effects of two widely used medications.
    Scientific Reports 03/2015; 5:8890. DOI:10.1038/srep08890 · 5.08 Impact Factor


1 Download
Available from