EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes

Gastroenterology Division, Department of Medicine, Abramson Cancer Center and Family Cancer Research Institute, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA.
AJP Gastrointestinal and Liver Physiology (Impact Factor: 3.74). 01/2005; 287(6):G1227-37. DOI: 10.1152/ajpgi.00253.2004
Source: PubMed

ABSTRACT The epidermal growth factor receptor (EGFR) activates several signaling cascades in response to epidermal growth factor stimulation. One of these signaling events involves tyrosine phosphorylation of signal transducer and activator of transcription (STAT), whereas another involves activation of the phosphatidylinositol 3-OH kinase pathway. Two possibilities for STAT activation exist: a janus kinase (JAK)-dependent and a JAK-independent mechanism. Herein, we demonstrate that EGFR overexpression in primary esophageal keratinocytes activates STAT in a JAK-dependent fashion with the functional consequence of enhanced cell migration, which can be abolished by use of a JAK-specific inhibitor, AG-490. We determined the mechanisms underlying the signal transduction pathway responsible for increased cell migration. Stimulation of EGFR induces Tyr701 phosphorylation of STAT1 and initiates complex formation of STAT1 and STAT3 with JAK1 and JAK2. Thereafter, the STATs translocate to the nucleus within 15 min. In addition, we found that activation of this signaling pathway results in matrix metalloproteinase-1 (MMP-1) activity. By contrast, Akt activation does not impact the EGFR-STATs-JAKs complex formation and nuclear translocation of the STATs with subsequent MMP-1 activity, although Akt activation may contribute to cell migration through an independent mechanism. Taken together, we find that the recruitment of the STAT-JAK complex by EGFR is responsible for keratinocyte migration that, in turn, might be mediated by MMP-1 activation.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite its aggressive nature, triple-negative breast carcinoma (TNBC) often exhibits leucocyte infiltrations which correlate with favorable prognosis. In this study, we offer an explanation for this apparent conundrum by defining TNBC cell subsets which overexpress the IL-15 immune receptor IL15RA. This receptor usually forms a heterotrimer with the IL-2 receptors IL2RB and IL2RG, which regulates the proliferation and differentiation of cytotoxic T cells and NK cells. However, unlike IL15RA, the IL2RB and IL2RG receptors are not upregulated in basal-like TNBC breast cancer cells that express IL15RA. Mechanistic investigations indicated that IL15RA signaling activated JAK1, STAT1, STAT2, AKT, PRS40 and ERK1/2 in the absence of IL2RB and IL2RG, whereas neither STAT5 nor JAK2 were activated. RNAi-mediated attenuation of IL15RA established its role in cell growth, apoptosis and migration, whereas expression of the IL-15 cytokine in IL15RA-expressing cells stimulated an autocrine signaling cascade that promoted cell proliferation and migration and blocked apoptosis. Notably, co-expression of IL15RA and IL-15 was also sufficient to activate peripheral blood mononuclear cells upon co-culture in a paracrine signaling manner. Overall, our findings offer a mechanistic explanation for the paradoxical association of some high-grade breast tumors with better survival outcomes, due to engagement of the immune stroma.
    Cancer Research 06/2014; 74(17). DOI:10.1158/0008-5472.CAN-14-0637 · 9.28 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473) and GSK3β(S9). Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473) phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308) priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA), high-grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology.
    PLoS ONE 10/2014; 9(10):e109868. DOI:10.1371/journal.pone.0109868 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 29, 2014