Article

One-leg stance in healthy young and elderly adults: a measure of postural steadiness?

Karolinska Institutet, Neurotec Department, Division of Physiotherapy, Motor Control and Physical Therapy Research Laboratory, 23100, 141 83 Huddinge, Sweden.
Clinical Biomechanics (Impact Factor: 1.88). 09/2004; 19(7):688-94. DOI: 10.1016/j.clinbiomech.2004.04.002
Source: PubMed

ABSTRACT To investigate postural steadiness during 30 s of one-leg stance in healthy young and elderly adults, by analysing the pattern of the ground reaction force variability.
A laboratory set-up was used to analyse the variability of the ground reaction forces in relation to time as a measure of postural steadiness.
The one-leg stance test is a measure considered to assess postural steadiness in a static position by a temporal measurement. The common notion is that a better postural steadiness, i.e. less force variability, allows for longer time standing on one leg. However, there is lack of evidence how postural steadiness during one-leg stance changes over time.
Twenty-eight healthy elderly and 28 healthy young adults were tested by means of force plates assessing ground reaction forces while performing one-leg stance.
During one-leg stance, two phases could be identified in both groups: First a dynamic phase, a rapid decrease of force variability, and thereafter a static phase, maintaining a certain level of force variability. During the first 5 s of one-leg stance the force variability decreased significantly more in the young group resulting in a lower force variability level during the static phase than in the elderly.
The difficulties in maintaining the static position in elderly seems dependent on the reduced initial decrease in force variability and/or musculoskeletal components. We suggest that the first 5 s are crucial when assessing balance during one-leg stance.

2 Followers
 · 
183 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The somatotype may influence the balance control ability. The quality of balance performance is an important factor to prevent injuries during sport activities. Objectives: The purpose of this study was to investigate the influence of somatotype on the static and dynamic balance indices as well as falling risk index. Patients and Methods: A total of 141 university student healthy young females were recruited. We measured anthropometric somatotypes (10 parameters, Heath-Carter’s method) and the mean of center of pressure (COP) displacement on a Biodex balance system during unilateral (static balance indices) and bilateral standing (dynamic balance indices) with their eyes open and eyes closed. Results: In this research, the frequency of somatotypes was as follows: endomorph, 51; mesomorph, 43; and ectomorph, 47. During dynamic tests, the endomorph group showed significantly higher COP sway (P < 0.01) and falling risk index (P < 0.05) than other somatotype groups did. The mesomorph group showed significantly better postural control during dynamic balance control test with eyes closed (P < 0.05) in comparison to the other somatotype groups. Conclusions: The mesomorph subjects had a higher degree of static and dynamic balance control, while a lower degree of balance control was found among endomorph subjects, especially when standing on the unlocked balance platform with both eyes open and eyes closed.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinical musculoskeletal pain commonly accompanies hip pathology and can impact balance performance. Due to the cross-sectional designs of previous studies, and the multifactorial nature of musculoskeletal pain conditions, it is difficult to determine whether pain is a driver of balance impairments in this population. This study explored the effects of experimentally induced hip muscle pain on static and dynamic balance. Twelve healthy adults (4 women, mean[SD]: 27.1[3] years) performed three balance tasks on each leg, separately: single-leg standing (eyes closed), single-leg squat (eyes open), forward step (eyes open); before and after hypertonic saline injection (1ml, 5% NaCl) into the right gluteus medius. Range, standard deviation (SD), and velocity of the centre of pressure (CoP) in medio-lateral (ML) and anterior-posterior (AP) directions were considered. During the single-leg squat task, experimental hip pain was associated with significantly reduced ML range (-4[13]%, P=0.028), AP range (-14[21]%, P=0.005), APSD (-15[28]%, P=0.009), and AP velocity (-6[13]%, P=0.032), relative to the control condition, in both legs. No effect of pain was observed during single-leg standing and forward stepping. Significant between-leg differences in ML velocity were observed during the forward stepping task (P=0.034). Pain is a potentially modifiable patient-reported outcome in individuals with hip problems. This study demonstrates that acute hip muscle pain alone, without interference of musculoskeletal pathology, does not lead to the same impairments in balance as exhibited in clinical populations with hip pathologies. This is the first step in understanding how and why balance is altered in painful hip pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.
    Gait & posture 03/2015; 41(4). DOI:10.1016/j.gaitpost.2015.02.013 · 2.30 Impact Factor
  • Source
    06/2014; 24(2):111-119. DOI:10.5103/KJSB.2014.24.2.111