Article

Chronic fluoxetine suppresses circulating estrogen and the enhanced spatial learning of estrogen-treated ovariectomized rats.

Behavioral Neuroscience Group, University of Missouri--St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121, USA.
Psychoneuroendocrinology (Impact Factor: 5.14). 12/2004; 29(10):1241-9. DOI: 10.1016/j.psyneuen.2004.03.001
Source: PubMed

ABSTRACT We are interested in developing animal models to evaluate cognitive processes as influenced by the interplay of steroidal hormones and drugs commonly used in psychotherapy. Two experiments with female rats were conducted to evaluate the interaction of estrogen with the serotonin specific reuptake inhibitor (SSRI) fluoxetine on spatial learning and memory and on the endocrine system. In experiment 1, estrogen (50 microg estradiol benzoate/kg body weight) was administered SC to young adult, ovariectomized (OVX) rats either alone or in combination with fluoxetine (2 mg/kg SC). After a month, the groups were compared with appropriate OVX and gonadally intact controls on trials to criterion in a hole board spatial memory task using massed training trials. Experiment 2 was a dose-response study of the influence of fluoxetine (0.5-5 mg/kg) on circulating estrogen in OVX, estrogen treated females. Results were that the OVX females administered estrogen only reached the learning criterion significantly faster than the other groups. All other groups, including the estrogen + fluoxetine animals, performed no better than the controls. Combining fluoxetine with estrogen also lowered circulating estrogen titers, with the least estrogen reductions being in the group receiving the highest dosage of fluoxetine. No differences among groups were found on measures of activity in an open field or for anxiety in a plus maze. Conclusions were that administration of estrogen improved spatial learning and memory in OVX rats, whereas concurrent fluoxetine exposure suppressed the levels of estrogen in circulation and eliminated the gains in spatial performance obtained from chronic estrogen exposure.

0 Bookmarks
 · 
39 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective.- In this study, we evaluated the influence of sex and estrogen treatment on nitroglycerin (NTG)-induced neuronal activation in the rat brain. Background.- Systemic NTG activates cerebral nuclei of rat involved in nociceptive transmission, as well as in neuroendocrine and autonomic functions. These changes are considered relevant for migraine, since NTG consistently induces spontaneous-like attacks in migraineurs. Methods.- Intact and castrated male and female rats, and castrated female rats treated with estradiol benzoate (or placebo) were injected with NTG and sacrificed after 4 hours. Rats were perfused, and their brains were processed for Fos protein, a marker of neuronal activation. Results.- Data showed a reduced expression of NTG-induced Fos protein in the paraventricular nucleus (PVH), supraoptic nucleus (SON), and nucleus trigeminalis caudalis (SPVC) of male rats in comparison with female rats. Furthermore, in castrated female rats, NTG-induced neuronal activation was reduced in PVH, SON, central nucleus of the amygdala (AMI), nucleus tractus solitarius (NTS), area postrema (AP), and SPVC, while in castrated male rats Fos expression was reduced uniquely in the SPVC. Chronic administration of estrogens restored Fos protein expression in PVH, SON, AMI, NTS, AP, and SPVC in castrated female rats. Conclusion.- These data provide a support for the existence of a sexual dimorphism in NTG-induced neuronal activation, and they prompt a specific model for evaluating and modulating the influence of estrogens upon the cerebral structures implicated in the pathophysiology of migraine.
    Headache The Journal of Head and Face Pain 08/2012; · 2.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent years have seen an increase in the use of antidepressant drugs, especially fluoxetine (FLX), in sensitive populations, such as pregnant and lactating women. Although some evidence suggests a possible endocrine action of FLX, no specific studies have been performed to investigate this hypothesis. In the present study, we investigated the possible (anti)androgenic and (anti)estrogenic actions of FLX using Hershberger, uterotrophic (0.4, 1.7, and 17 mg/kg), and reporter gene (7.6–129 μM) assays. In the Hershberger assay, no differences were observed in androgen-dependent organ weights. However, the uterotrophic and gene reporter assays indicated a possible estrogenic action of FLX. Uterine weight increased in the 1.7 and 17 mg/kg/day groups in the 3-day uterotrophic assay in immature rats. Additionally, noncytotoxic concentrations of FLX induced estrogenic responses and increased the estrogenic response of estradiol in MCF-7 breast cancer cells transfected with luciferase.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic activation of immune-inflammatory and oxidative and nitrosative stress (O&NS) pathways plays an important role in the pathophysiology of clinical depression. Increased IgA responses directed against LPS of gram-negative bacteria, indicating increased bacterial translocation, may be one of the drivers underpinning these pathways. There is a strong association between signs of bacterial translocation and chronicity of depression and O&NS, but not pro-inflammatory cytokines. The aims of the present study were to: 1) develop a new neurobehavioral model of (chronic) depression (anhedonic behavior) that may reflect chronic LPS stimulation and is associated with increased oxidative stress, and 2) to delineate the effects of fluoxetine on this new depression model. We established that in female mice repeated LPS injections once daily for 5 days (from 750 μg/kg to a maximal dose 1250 μg/kg; increasing doses for the first three days which were then gradually decreased on day 4 and 5) at a one-month interval and this repeated for 4 consecutive months induced chronic anhedonia (estimated by the preference to drink a 1% sucrose) lasting for al least 7 weeks. Chronic LPS administration significantly decreased thymus weight, proliferative activity of splenocytes, production of interferon (IFN)γ and interleukin-(IL)10, and increased superoxide and corticosterone production. Treatment with fluoxetine for 3 weeks abolished the neurobehavioral effects of LPS. The antidepressant effect of fluoxetine was accompanied by increased production of IL-10 and reduced superoxide and corticosterone production. Our results suggest that repeated intermittent LPS injections to female mice may be a useful model of chronic depression and in particular for the depressogenic effects of long standing activation of the toll-like receptor IV complex.
    Brain Behavior and Immunity 01/2013; · 5.61 Impact Factor