Localization and physical properties experiments conducted by Spirit at Gusev Crater.

Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, USA.
Science (Impact Factor: 31.48). 09/2004; 305(5685):821-4. DOI: 10.1126/science.1099922
Source: DLR

ABSTRACT The precise location and relative elevation of Spirit during its traverses from the Columbia Memorial station to Bonneville crater were determined with bundle-adjusted retrievals from rover wheel turns, suspension and tilt angles, and overlapping images. Physical properties experiments show a decrease of 0.2% per Mars solar day in solar cell output resulting from deposition of airborne dust, cohesive soil-like deposits in plains and hollows, bright and dark rock coatings, and relatively weak volcanic rocks of basaltic composition. Volcanic, impact, aeolian, and water-related processes produced the encountered landforms and materials.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By sol 440, the Spirit rover has traversed a distance of 3.76 km (actual distance traveled instead of odometry). Localization of the lander and the rover along the traverse has been successfully performed at the Gusev crater landing site. We localized the lander in the Gusev crater using two-way Doppler radio positioning and cartographic triangulations through landmarks visible in both orbital and ground images. Additional high-resolution orbital images were used to verify the determined lander position. Visual odometry and bundle adjustment technologies were applied to compensate for wheel slippage, azimuthal angle drift, and other navigation errors (which were as large as 10.5% in the Husband Hill area). We generated topographic products, including 72 ortho maps and three-dimensional (3-D) digital terrain models, 11 horizontal and vertical traverse profiles, and one 3-D crater model (up to sol 440). Also discussed in this paper are uses of the data for science operations planning, geological traverse surveys, surveys of wind-related features, and other science applications.
    Journal of Geophysical Research Atmospheres 01/2006; 111. · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a comprehensive analysis of the topographic mapping capabilities of images from the Mars Exploration Rover 2003 (MER) mission. The D measurement accuracies of Pancam (panoramic camera) and Navcam (navigation camera) stereo pairs are estimated using basic photogrammetric principles. The mapping capabilities of single-site panoramas, multi-site panoramas, and wide-baseline stereo images are analyzed based on the bundle adjustment technology. This analysis provides an overview of understanding the attainable geometric accuracies from the images and for best usage of the resultant mapping products during and after the MER mission.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.
    Science 01/2014; 343(6169):1248097. · 31.48 Impact Factor

Full-text (4 Sources)

Available from
Jun 5, 2014