Spatial patterns of gene expression in the olfactory bulb

Department of Molecular and Cell Biology, Functional Genomics Laboratory, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.67). 09/2004; 101(34):12718-23. DOI: 10.1073/pnas.0404872101
Source: PubMed


How olfactory sensory neurons converge on spatially invariant glomeruli in the olfactory bulb is largely unknown. In one model, olfactory sensory neurons interact with spatially restricted guidance cues in the bulb that orient and guide them to their target. Identifying differentially expressed molecules in the olfactory bulb has been extremely difficult, however, hindering a molecular analysis of convergence. Here, we describe several such genes that have been identified in a screen that compiled microarray data to create a three-dimensional model of gene expression within the mouse olfactory bulb. The expression patterns of these identified genes form the basis of a nascent spatial map of differential gene expression in the bulb.

Full-text preview

Available from:
  • Source
    • "These models allow for more flexibility, for instance when comparing more than two samples or introducing additional sources of variation. Such an example is Lin et al. [11], where a complex experimental design and research goal are addressed by setting various contrasts in the design of the linear model. The bioconductor package limma, developed by Smyth [12], applies a gene-wise linear model, and allows for the analysis of complex experiments (comparing many RNA samples), as well as more simple replicated experiments with two RNA samples. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A challenge in gene expression studies is the reliable identification of differentially expressed genes. In many high-throughput studies, genes are accepted as differentially expressed only if they satisfy simultaneously a p value criterion and a fold change criterion. A statistical method, TREAT, has been developed for microarray data to assess formally if fold changes are significantly higher than a predefined threshold. We have recently applied the NanoString digital platform to study expression of mouse odorant receptor genes, which form with 1,200 members the largest gene family in the mouse genome. Our objectives are, on these data, to decrease false discoveries when formally assessing the genes relative to a fold change threshold, and to provide a guided selection in the choice of this threshold. Statistical tests have been developed for microarray data to identify genes that are differentially expressed relative to a fold change threshold. Here we report that another approach, which we refer to as tTREAT, is more appropriate for our NanoString data, where false discoveries lead to costly and time-consuming follow-up experiments. Methods that we refer to as tTREAT2 and the running fold change model improve the performance of the statistical tests by protecting or selecting the fold change threshold more objectively. We show the benefits on simulated and real data. Gene-wise statistical analyses of gene expression data, for which the significance relative to a fold change threshold is important, give reproducible and reliable results on NanoString data of mouse odorant receptor genes. Because it can be difficult to set in advance a fold change threshold that is meaningful for the available data, we developed methods that enable a better choice (thus reducing false discoveries and/or missed genes) or avoid this choice altogether. This set of tools may be useful for the analysis of other types of gene expression data.
    BMC Bioinformatics 02/2014; 15(1):39. DOI:10.1186/1471-2105-15-39 · 2.58 Impact Factor
  • Source
    • "For all microarray analysis, biological replicates were obtained from $ 80 manually dissected explants from sibling embryos. Total RNA was extracted with Trizol (Invitrogen) and purified according to a standard protocol (Lin et al., 2004), modified to include a proteinase K digestion step to remove yolk phospholipoproteins. The detailed modified protocol is described in Supplemental Materials. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.
    Developmental Biology 12/2013; 386(2). DOI:10.1016/j.ydbio.2013.12.010 · 3.55 Impact Factor
  • Source
    • "We previously performed a microarray-based screen to identify candidate genes expressed in the olfactory bulb that could act to guide olfactory axons to their target glomeruli (Lin et al., 2004). One candidate signaling pathway identified by this screen was the IGF signaling pathway. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Olfactory neurons project their axons to spatially invariant glomeruli in the olfactory bulb, forming an ordered pattern of innervation comprising the olfactory sensory map. A mirror symmetry exists within this map, such that neurons expressing a given receptor typically project to one glomerulus on the medial face and one glomerulus on the lateral face of the bulb. The mechanisms underlying an olfactory neuron's choice to project medially versus laterally remain largely unknown, however. Here we demonstrate that insulin-like growth factor (IGF) signaling is required for sensory innervation of the lateral olfactory bulb. Mutations that eliminate IGF signaling cause axons destined for targets in the lateral bulb to shift to ectopic sites on the ventral-medial surface. Using primary cultures of olfactory and cerebellar neurons, we further show that IGF is a chemoattractant for axon growth cones. Together these observations reveal a role of IGF signaling in sensory map formation and axon guidance.
    Neuron 04/2008; 57(6):847-57. DOI:10.1016/j.neuron.2008.01.027 · 15.05 Impact Factor
Show more