Juxtaaortic counterpulsation: Comparison with intraaortic counterpulsation in an animal model of acute heart failure

Favaloro University, Buenos Aires, Argentina.
ASAIO Journal (Impact Factor: 1.52). 07/2004; 50(4):311-5.
Source: PubMed


This study was designed to compare the effects of juxtaaortic balloon counterpulsation (JABC), performed in ascending aorta and the aortic arch, with those yielded by intraaortic balloon counterpulsation (IABC) in descending aorta, in experimental animals during induced cardiac failure. JABC was achieved with a manufactured Dacron prosthesis and a balloon pump placed between the prosthesis and the wrapped aorta. JABC resulted in a significant increase of cardiac output (from 2.33+/-0.82 to 2.61+/-1.12 L/min, p < 0.05), cardiac index (from 0.071+/-0.025 to 0.080+/-0.033 L/min/kg, p < 0.05) and diastolic pressure augmentation evaluated through diastolic and systolic areas beneath the aortic pressure curve (DABAC/SABAC) index (from 0.94+/-0.21 to 1.10+/-0.33, p < 0.01). End diastolic aortic pressure showed a significant decrease with JABC (from 31.90+/-7.09 to 27.83+/-9.72 mm Hg, p < 0.05). A close association between percentage of DABAC/SABAC increases obtained with IABC and JABC was observed (r2 = 0.67; p < 0.001). Counterpulsation obtained by a juxtaaortic catheter placed in the arch and the ascending wrapped aorta results in an effective hemodynamic improvement comparable with that achieved by an intraaortic catheter in open chest sheep.

3 Reads
  • Source
    Revista Mexicana de Ingenieria Biomedica 01/2005; XXVI(2):0-.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intraaortic balloon pump (IABP) is the single most effective and widely used device for temporary mechanical assistance of the failing heart. Although the principles underlying IABP function are simple, various biologic factors often determine its performance in a particularly complicated way. We briefly describe the basic disciplines of counterpulsation by IABP and the induced hemodynamic changes while clarifying the biologic mechanisms that play a crucial role in the modification of IABP acute hemodynamic performance.
    ASAIO Journal 05/2005; 51(3):296-300. DOI:10.1097/01.MAT.0000159381.97773.9B · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An adventitia dependent regulation of the vascular smooth muscle tone has been described. However, if the adventitia plays an active role on arterial wall biomechanical behaviour and functions remains to be established. Our aim was to characterize the influence of adventitia on arterial wall mechanical properties and the arterial conduit and buffer functions. Ovine brachiocephalic arteries were studied in vivo (n = 8) and in vitro (with null tone) in a circulation mock (n = 8). Isobaric, isoflow and isofrequency studies were performed. In each segment, pressure and diameter waves were assessed before and after adventitia removal. From the arterial stress-strain relationship, we derived the elastic and the viscous modulus. The buffering and conduit functions were calculated using the Kelvin-Voigt's time constant and the inverse of the characteristic impedance, respectively. In in vivo studies arterial diameter decreased after adventitia removal (P < 0.05). Elastic and viscous modulus in in vivo studies were significantly higher in adventitia-removed arteries, compared with values in intact vessels (P < 0.05). This behaviour was not observed in in vitro experiments. An impairment of buffer and conduit functions was observed in vivo after adventitia removal (P < 0.05), while both functions remain unchanged in in vitro studies (P > 0.05). Arterial wall viscosity and elasticity were influenced by adventitia removal in in vivo studies, possibly by a smooth muscle-dependent mechanism, since it was not present in in vitro experiments. Adventitia would be involved in a physiological mechanism of arterial wall viscous and elastic properties regulation, that could influence arterial buffering and conduit functions.
    Acta Physiologica 10/2006; 188(2):103-11. DOI:10.1111/j.1748-1716.2006.01614.x · 4.38 Impact Factor
Show more