Article

Neuroscience. NAD to the rescue.

Clinical Research Division and J. A. Simon is in the Clinical Research and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Science (Impact Factor: 31.48). 09/2004; 305(5686):954-5. DOI: 10.1126/science.1102497
Source: PubMed

ABSTRACT Identified 15 years ago, the
Wld
mouse carries a spontaneous mutation that encodes a fusion protein with neuroprotective properties. In a Perspective,
Simon
discusses new work (
Araki
et al.) that identifies the Nmnat1 fragment of the fusion protein as mediating neuroprotection by boosting NAD biosynthesis and
increasing the activity of the NAD-dependent deacetylase, SIRT1, a regulator of transcription.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA methyltransferase 1 (DNMT1) is essential for DNA methylation, gene regulation and chromatin stability. We previously discovered DNMT1 mutations cause hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (HSAN1E; OMIM 614116). HSAN1E is the first adult-onset neurodegenerative disorder caused by a defect in a methyltransferase gene. HSAN1E patients appear clinically normal until young adulthood, then begin developing the characteristic symptoms involving central and peripheral nervous systems. Some HSAN1E patients also develop narcolepsy and it has recently been suggested that HSAN1E is allelic to autosomal dominant cerebellar ataxia, deafness, with narcolepsy (ADCA-DN; OMIM 604121), which is also caused by mutations in DNMT1. A hotspot mutation Y495C within the targeting sequence domain of DNMT1 has been identified among HSAN1E patients. The mutant DNMT1 protein shows premature degradation and reduced DNA methyltransferase activity. Herein, we investigate genome-wide DNA methylation at single-base resolution through whole-genome bisulfite sequencing of germline DNA in 3 pairs of HSAN1E patients and their gender- and age-matched siblings. Over 1 billion 75-bp single-end reads were generated for each sample. In the 3 affected siblings, overall methylation loss was consistently found in all chromosomes with X and 18 being most affected. Paired sample analysis identified 564,218 differentially methylated CpG sites (DMCs; P<0.05), of which 300 134 were intergenic and 264 084 genic CpGs. Hypomethylation was predominant in both genic and intergenic regions, including promoters, exons, most CpG islands, L1, L2, Alu, and satellite repeats and simple repeat sequences. In some CpG islands, hypermethylated CpGs outnumbered hypomethylated CpGs. In 201 imprinted genes, there were more DMCs than in non-imprinted genes and most were hypomethylated. Differentially methylated region (DMR) analysis identified 5649 hypomethylated and 1872 hypermethylated regions. Importantly, pathway analysis revealed 1693 genes associated with the identified DMRs were highly associated in diverse neurological disorders and NAD+/NADH metabolism pathways is implicated in the pathogenesis. Our results provide novel insights into the epigenetic mechanism of neurodegeneration arising from a hotspot DNMT1 mutation and reveal pathways potentially important in a broad category of neurological and psychological disorders.
    Epigenetics: official journal of the DNA Methylation Society 07/2014; 9(8). DOI:10.4161/epi.29676 · 5.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuins (SIRTs) are a family of regulatory proteins of genetic information with a high degree of conservation among species. The SIRTs are heavily involved in several physiological functions including control of gene expression, metabolism, and aging. SIRT1 has been the most studied sirtuin and plays important role in the prevention and progression of neurodegenerative diseases acting in different pathways of proteins involved in brain function. SIRT1 activation regulates important genes that also exert neuroprotective actions such as p53, nuclear factor kappa B, peroxisome proliferator-activated receptor-gamma (PPARγ), PPARγ coactivator-1α, liver X receptor, and forkhead box O. It is well established in literature that growing population aging, oxidative stress, inflammation, and genetic factors are important conditions to development of neurodegenerative disorders. However, the exact pathophysiological mechanisms leading to these diseases remain obscure. The sirtuins show strong potential to become valuable predictive and prognostic markers for diseases and as therapeutic targets for the treatment of a variety of neurodegenerative disorders. In this context, the aim of the current review is to present an actual view of the potential role of SIRT1 in modulating the interaction between target genes and neurodegenerative diseases on the brain.
    Molecular Neurobiology 04/2013; DOI:10.1007/s12035-013-8459-x · 5.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinamide adenine dinucleotide (NAD+) is synthesized by the action of nicotinamide mononucleotide adenylyltransferase (NMNAT) from NMN and ATP. The mouse homolog of NMNAT-2 (mmNMNAT-2) was cloned, expressed, and subsequently identified using MALDI-TOF in conjunction with the ProFound database. Circular dichroism analyses of recombinant mmNMNAT-2 showed α helical and β sheet secondary structures, consistent with the known structure of the human isoform. Competition experiments using mouse pancreatic tissue lysates with recombinant mmNMNAT-2 demonstrated that the activity of the expressed protein was similar to the human isoform. Immunohistochemistry of mouse embryonic tissues with hNMNAT-2 also showed a tissue- and cellular-specific expression of this isoform. Therefore, our studies demonstrate for the first time the clear biological evidence for the existence of a mouse isoform of hNMNAT-2. These studies may help in future investigations aimed at understanding the regulation of this gene and its pathway, and in turn, will spur the development of novel therapies for diseases such as cancer and diabetes since mice are the most frequently used experimental system for in vivo studies.
    Medicinal Chemistry 10/2011; 7(6):718-726. DOI:10.2174/157340611797928262 · 1.39 Impact Factor