Article

Recombination and loss of complementation: a more than two-fold cost for parthenogenesis.

Département de Biologie, Section Ecologie et Evolution, Université de Fribourg, Fribourg, Switzerland.
Journal of Evolutionary Biology (Impact Factor: 3.48). 10/2004; 17(5):1084-97. DOI: 10.1111/j.1420-9101.2004.00745.x
Source: PubMed

ABSTRACT Certain types of asexual reproduction lead to loss of complementation, that is unmasking of recessive deleterious alleles. A theoretical measure of this loss is calculated for apomixis, automixis and endomitosis in the cases of diploidy and polyploidy. The effect of the consequent unmasking of deleterious recessive mutations on fitness is also calculated. Results show that, depending on the number of lethal equivalents and on the frequency of recombination, the cost produced by loss of complementation after few generations of asexual reproduction may be greater than the two-fold cost of meiosis. Maintaining complementation may, therefore, provide a general short-term advantage for sexual reproduction. Apomixis can replace sexual reproduction under a wide range of parameters only if it is associated with triploidy or tetraploidy, which is consistent with our knowledge of the distribution of apomixis.

0 Bookmarks
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite much theoretical work, the molecular-genetic causes and evolutionary consequences of asexuality remain largely undetermined. Asexual animal species are rare, evolutionarily short-lived, and thought to suffer mutational meltdown as a result of lack of recombination. Whole-genome analysis of 11 sexual and 11 asexual genotypes of Daphnia pulex indicates that current asexual lineages are in fact very young, exhibit no signs of purifying selection against accumulating mutations, and have extremely high rates of gene conversion and deletion. The reconstruction of chromosomal haplotypes in regions containing SNP markers associated with asexuality (chromosomes VIII and IX) indicates that introgression from a sister species, Daphnia pulicaria, underlies the origin of the asexual phenotype. Silent-site divergence of the shared chromosomal haplotypes of asexuals indicates that the spread of asexuality is as recent as 1,250 y, although the origin of the meiosis-suppressing element or elements could be substantially older. In addition, using previous estimates of the gene conversion rate from Daphnia mutation accumulation lines, we are able to age each asexual lineage. Although asexual lineages originate from wide crosses that introduce elevated individual heterozygosities on clone foundation, they also appear to be constrained by the inbreeding-like effect of loss of heterozygosity that accrues as gene conversion and hemizygous deletion expose preexisting recessive deleterious alleles of asexuals, limiting their evolutionary longevity. Our study implies that the buildup of newly introduced deleterious mutations (i.e., Muller's ratchet) may not be the dominant force imperiling nonrecombining populations of D. pulex, as previously proposed.
    Proceedings of the National Academy of Sciences 08/2013; · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction.
    Plant reproduction. 08/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolutionary paradox of sex remains one of the major debates in evolutionary biology. The study of species capable of both sexual and asexual reproduction can elucidate factors important in the evolution of sex. One such species is the ant Cataglyphis cursor, where the queen maximizes the transmission of her genes by producing new queens (gynes) asexually while simultaneously maintaining a genetically diverse workforce via the sexual production of workers. We show that the queen can also produce gynes sexually and may do so to offset the costs of asexual reproduction. We genotyped 235 gynes from 18 colonies and found that half were sexually produced. A few colonies contained both sexually and asexually produced gynes. Although workers in this species can also use thelytoky, we found no evidence of worker production of gynes based on genotypes of 471 workers from the six colonies producing sexual gynes. Gynes are thus mainly, and potentially exclusively, produced by the queen. Simulations of gynes inbreeding level following one to ten generations of automictic thelytoky suggest that the queen switches between or combines thelytoky and sex, which may reduce the costs of inbreeding. This is supported by the relatively small size of inbred gynes in one colony, although we found no relationship between the level of inbreeding and immune parameters. Such facultative use of sex and thelytoky by individual queens contrasts with other known forms of parthenogenesis in ants, which are typically characterized by distinct lineages specializing in one strategy or the other.
    Journal of Evolutionary Biology 05/2013; 26(6):1431-1444. · 3.48 Impact Factor

Full-text

View
1 Download
Available from