Loss of collagen XVIII enhances neovascularization and vascular permeability in atherosclerosis.

Vascular Biology Research Program, Department of Surgery, Children's Hospital Medical Center, 300 Longwood Ave, Boston, MA 02115, USA.
Circulation (Impact Factor: 15.2). 10/2004; 110(10):1330-6. DOI: 10.1161/01.CIR.0000140720.79015.3C
Source: PubMed

ABSTRACT Plaque neovascularization is thought to promote atherosclerosis; however, the mechanisms of its regulation are not understood. Collagen XVIII and its proteolytically released endostatin fragment are abundant proteoglycans in vascular basement membranes and the walls of major blood vessels. We hypothesized that collagen XVIII in the aortic wall inhibits the proliferation and intimal extension of vasa vasorum.
To test our hypothesis, we bred collagen XVIII-knockout (Col18a1(-/-)) mice into the atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) strain. After 6 months on a cholesterol diet, aortas from ApoE(-/-);Col18a1(-/-) and ApoE(-/-);Col18a1(+/-) heterozygote mice showed increased atheroma coverage and enhanced lipid accumulation compared with wild-type littermates. We observed more extensive vasa vasorum and intimal neovascularization in knockout but not heterozygote aortas. Endothelial cells sprouting from Col18a1(-/-) aortas were increased compared with heterozygote and wild-type aortas. In contrast, vascular permeability of large and small blood vessels was enhanced with even heterozygous loss of collagen XVIII but was not suppressed by increasing serum endostatin to wild-type levels.
Our results identify a previously unrecognized function for collagen XVIII that maintains vascular permeability. Loss of this basement membrane proteoglycan enhances angiogenesis and vascular permeability during atherosclerosis by distinct gene-dose-dependent mechanisms.

  • [Show abstract] [Hide abstract]
    ABSTRACT: There is a need for animal models of plaque rupture. We previously reported that elastin fragmentation, due to a mutation (C1039G(+/-)) in the fibrillin-1 (Fbn1) gene, promotes atherogenesis and a highly unstable plaque phenotype in apolipoprotein E deficient (ApoE(-/-)) mice on a Western-type diet (WD). Here, we investigated whether plaque rupture occurred in ApoE(-/-)Fbn1(C1039G+/-) mice and was associated with myocardial infarction, stroke, and sudden death. Female ApoE(-/-)Fbn1(C1039G+/-) and ApoE(-/-) mice were fed a WD for up to 35 weeks. Compared to ApoE(-/-) mice, plaques of ApoE(-/-)Fbn1(C1039G+/-) mice showed a threefold increase in necrotic core size, augmented T-cell infiltration, a decreased collagen I content (70 ± 10%), extensive neovascularization, intraplaque haemorrhage, and a significant increase in matrix metalloproteinase-2, -9, -12, and -13 expression or activity. Plaque rupture was observed in 70% of ascending aortas and in 50% of brachiocephalic arteries of ApoE(-/-)Fbn1(C1039G+/-) mice. In ApoE(-/-) mice, plaque rupture was not seen in ascending aortas and only in 10% of brachiocephalic arteries. Seventy percent of ApoE(-/-)Fbn1(C1039G+/-) mice died suddenly, whereas all ApoE(-/-) mice survived. ApoE(-/-)Fbn1(C1039G+/-) mice showed coronary plaques and myocardial infarction (75% of mice). Furthermore, they displayed head tilt, disorientation, and motor disturbances (66% of cases), disturbed cerebral blood flow (73% of cases; MR angiograms) and brain hypoxia (64% of cases), indicative of stroke. Elastin fragmentation plays a key role in plaque destabilization and rupture. ApoE(-/-)Fbn1(C1039G+/-) mice represent a unique model of acute plaque rupture with human-like complications.
    European Heart Journal 02/2014; · 14.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Incorporation of novel plasma protein biomarkers may improve current models for prediction of atherosclerotic cardiovascular disease (ASCVD) risk. We used discovery mass spectrometry (MS) to determine plasma concentrations of 861 proteins in 135 myocardial infarction (MI) cases and 135 matched controls. Then, we measured 59 markers by targeted MS in 336 ASCVD case-control pairs. Associations with MI or ASCVD were tested in single-marker and multiple-marker analyses adjusted for established ASCVD risk factors. Twelve single markers from discovery MS were associated with MI incidence (at P<0.01), adjusting for clinical risk factors. Seven proteins in aggregate (cyclophilin A, CD5 antigen-like, cell-surface glycoprotein MUC18, collagen-α 1 [XVIII] chain, salivary α-amylase 1, C-reactive protein, and multimerin-2) were highly associated with MI (P<0.0001) and significantly improved its prediction compared with a model with clinical risk factors alone (C-statistic of 0.71 versus 0.84). Through targeted MS, 12 single proteins were predictors of ASCVD (at P<0.05) after adjusting for established risk factors. In multiple-marker analyses, 4 proteins in combination (α-1-acid glycoprotein 1, paraoxonase 1, tetranectin, and CD5 antigen-like) predicted incident ASCVD (P<0.0001) and moderately improved the C-statistic from the model with clinical covariates alone (C-statistic of 0.69 versus 0.73). Proteomics profiling identified single- and multiple-marker protein panels that are associated with new-onset ASCVD and may lead to a better understanding of underlying disease mechanisms. Our findings include many novel protein biomarkers that, if externally validated, may improve risk assessment for MI and ASCVD.
    Arteriosclerosis Thrombosis and Vascular Biology 02/2014; · 6.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives. A cleavage fragment of collagen XVIII, endostatin, is released into the circulation and has been demonstrated to have antiangiogenic effects in animal models. We hypothesized that circulating endostatin would be increased in patients with symptoms of lower limb peripheral artery disease. Design. Cross-sectional study. Participants. Community dwelling older men. Measurements. Intermittent claudication was defined using the Edinburgh Claudication Questionnaire (ECQ). Serum endostatin was measured by a commercial ELISA. The association of serum endostatin with intermittent claudication was examined using logistic regression adjusting for age, diabetes, hypertension, dyslipidemia, coronary heart disease, and stroke. Results. Serum endostatin was measured in 1114 men who completed the ECQ. 106 men had intermittent claudication, 291 had atypical pain, and 717 had no lower limb pain. Mean (±standard deviation) serum endostatin concentrations (ng/mL) were 145.22 ± 106.93 for men with intermittent claudication, 129.11 ± 79.80 for men with atypical pain, and 116.34 ± 66.57 for men with no lower limb pain; P < 0.001. A 70 ng/mL increase in endostatin was associated with a 1.17-fold rise in the adjusted odds of having intermittent claudication (OR 1.17, 95% confidence interval 1.00-1.37, and P = 0.050). Conclusions. Serum endostatin is raised in older men who have symptoms of intermittent claudication. The role of endostatin in the genesis and outcome of peripheral artery disease requires further investigation.
    Disease markers 01/2014; 2014:298239. · 2.14 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014