Article

Inhibition of allergen-specific IgE reactivity by a human Ig Fcgamma-Fcepsilon bifunctional fusion protein.

Hart and Louis Lyon Laboratory, Division of Clinical Immunology and Allergy, Department of Medicine, University of California Los Angeles School of Medicine, CA 90095-1680, USA.
Journal of Allergy and Clinical Immunology (Impact Factor: 12.05). 09/2004; 114(2):321-7. DOI: 10.1016/j.jaci.2004.03.058
Source: PubMed

ABSTRACT Coaggregating FcepsilonRI with FcgammaRII receptors holds great potential for treatment of IgE-mediated disease by inhibiting FcepsilonRI signaling. We have previously shown that an Fcgamma-Fcepsilon fusion protein, human IgG-IgE Fc fusion protein (GE2), could inhibit FcepsilonRI-mediated mediator releases in vitro and in vivo.
We sought to test whether GE2 was capable of blocking mediator release from FcepsilonRI cells sensitized with IgE in vivo or in vitro before exposure to GE2, a critical feature for GE2 to be clinically applicable.
GE2 was tested for its ability to inhibit Fel d 1-induced mediator release from human blood basophils from subjects with cat allergy, human lung-derived mast cells, human FcepsilonRIalpha transgenic mice sensitized with human cat allergic serum, and rhesus monkeys naturally allergic to the dust mite Dermatophagoides farinae.
Basophils from subjects with cat allergy and lung mast cells degranulate when challenged with Fel d 1 and anti-IgE, respectively. GE2 itself did not induce mediator release but strongly blocked this Fel d 1- and anti-IgE-driven mediator release. GE2 was able to block Fel d 1-driven passive cutaneous anaphylaxis at skin sites sensitized with human serum from subjects with cat allergy in human FcepsilonRIalpha transgenic mice, but by itself, GE2 did not induce a passive cutaneous anaphylaxis reaction. Finally, GE2 markedly inhibited skin test reactivity to D farinae in monkeys naturally allergic to this allergen, with complete inhibition being observed at 125 ng.
GE2 is able to successfully compete for FcepsilonRs and FcgammaRs on cells presensitized in vitro and in vivo and lead to inhibition of IgE-mediated reactivity through coaggregation of FcepsilonRI with FcgammaRII.

0 Bookmarks
 · 
134 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Allergen-specific IgGs are known to inhibit IgE-mediated mast cell degranulation by two mechanisms, allergen-neutralization and engagement of the inhibitory FcγRIIB recruiting the phosphatase SHIP-1. Here we unravel an additional mechanism of IgG-mediated mast cell desensitization in mice: down-regulation of allergen-specific IgE. Mast cells were loaded in vitro and in vivo with monoclonal IgE antibodies specific for Fel d1 and exposed to immune complexes consisting of Fel d1-specific IgG antibodies recognizing different epitopes. Down regulation of IgE was followed by flow cytometry. Mast cells loaded with 2 different IgE antibodies efficiently internalized the IgE antibodies if exposed to recombinant Feld d1. In contrast, no down-regulation occurred if mast cells were loaded with IgE antibodies exhibiting a single were before stimulation with recombinant Fel d1. Interestingly, however, IgEs of a single specificity were rapidly down-regulated in vitro and in vivo in the presence of Fel d1-specific monoclonal IgGs recognizing another epitope on Fel d1. Despite FceRI-internalization, little calcium flux or mast cell degranulation occurred. FcγRIIB played a dual role in the process since it enhanced IgE internalization and prevented cellular activation as documented by the inhibited calcium flux and mast cell degranulation. Similar observations were made in the presence of low concentrations of IgEs recognizing several epitopes on Fel d1. We demonstrate here that Fel d1-specific IgG antibodies interact with FcγRIIB which (i) promotes IgE internalization; and (ii) inhibits mast cell activation. These results broaden our understanding of allergen-specific desensitization and may provide a mechanism for long-term desensitization of mast cells by selective removal of long-lived IgE antibodies on mast cells.
    Allergy 12/2013; · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells are important effector cells in allergy. They usually have a long life span and resist cell death induction. Fcγ receptor- and IgG immune complex-mediated apoptosis has been demonstrated in B-lineage cells, but not in mast cells. The aim of the current study was to investigate whether mast cells could respond to apoptosis induction by IgG immune complex aggregation of Fcγ receptors. It is known that mouse mast cells express the low-affinity Fcγ receptors FcγRIIB and FcγRIIIA, which bind IgG especially in the form of antigen-IgG immune complexes. Mouse bone marrow-derived cultured mast cells were examined for surface expression of FcγRIIB and FcγRIIIA. Apoptosis of such cells from wild-type, FcγRIIB(-/-) or FcγRIIIA(-/-) mice was measured following receptor aggregation by IgG immune complexes. Our data demonstrate that aggregation of either FcγRIIB or FcγRIIIA by IgG immune complexes induced apoptosis of mouse bone marrow-derived cultured mast cells. However, mast cells expressing both FcγRIIB and FcγRIIIA were able to resist cell death induction by IgG immune complexes. Our findings reveal a fine-tuning system for regulating mast cell apoptosis through aggregating Fcγ receptors by IgG immune complexes. Such apoptosis regulation may have a substantial impact on mast cell homeostasis during allergic inflammation.
    Allergy 07/2012; 67(10):1233-40. · 5.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells and basophils (MCs/Bs) play a crucial role in type I allergy, as well as in innate and adaptive immune responses. These cells mediate their actions through soluble mediators, some of which are targeted therapeutically by, for example, H1- and H2-antihistamines or cysteinyl leukotriene receptor antagonists. Recently, considerable progress has been made in developing new drugs that target additional MC/B mediators or receptors, such as serine proteinases, histamine 4-receptor, 5-lipoxygenase-activating protein, 15-lipoxygenase-1, prostaglandin D2, and proinflammatory cytokines. Mediator production can be abrogated by the use of inhibitors directed against key intracellular enzymes, some of which have been used in clinical trials (eg, inhibitors of spleen tyrosine kinase, phosphatidylinositol 3-kinase, Bruton tyrosine kinase, and the protein tyrosine kinase KIT). Reduced MC/B function can also be achieved by enhancing Src homology 2 domain-containing inositol 5' phosphatase 1 activity or by blocking sphingosine-1-phosphate. Therapeutic interventions in mast cell-associated diseases potentially include drugs that either block ion channels and adhesion molecules or antagonize antiapoptotic effects on B-cell lymphoma 2 family members. MCs/Bs express high-affinity IgE receptors, and blocking their interactions with IgE has been a prime goal in antiallergic therapy. Surface-activating receptors, such as CD48 and thymic stromal lymphopoietin receptors, as well as inhibitory receptors, such as CD300a, FcγRIIb, and endocannabinoid receptors, hold promising therapeutic possibilities based on preclinical studies. The inhibition of activating receptors might help prevent allergic reactions from developing, although most of the candidate drugs are not sufficiently cell specific. In this review recent advances in the development of novel therapeutics toward different molecules of MCs/Bs are presented.
    The Journal of allergy and clinical immunology 04/2014; · 12.05 Impact Factor

Full-text

View
0 Downloads