Tubule and neurofilament immunoreactivity in human hairy skin: markers for intraepidermal nerve fibers.

Department of Clinical Neurosciences, Division of Neuromuscular Diseases, National Neurological Institute "Carlo Besta," via Celoria 11, 20133 Milan, Italy.
Muscle & Nerve (Impact Factor: 2.31). 10/2004; 30(3):310-6. DOI: 10.1002/mus.20098
Source: PubMed

ABSTRACT The cytoplasmic protein gene product 9.5 (PGP 9.5) is considered a reliable marker for intraepidermal nerve fibers (IENFs). However, PGP 9.5 expression has never been compared with antibodies against the main components of the cytoskeleton. We compared the density of PGP 9.5-positive IENF at the leg with that obtained using a panel of antibodies specific for certain cytoskeletal components, namely, anti-unique beta-tubulin (TuJ1), anti-nonphosphorylated microtubule-associated protein-1B (MAP1B), anti-70 and 200 KDa neurofilament (NF), and antiphosphorylated neurofilament (SMI 312), in 15 healthy subjects and in 10 patients with painful neuropathy. We also performed colocalization studies and investigated the relationship between IENFs and Schwann cells. In both controls and neuropathies, the density of IENF labeled by PGP 9.5, TuJ1, and MAP1B did not differ, whereas that of NF and SMI 312 was significantly lower. Double-staining studies confirmed that antibodies against cytoskeletal markers can be used to reliably stain skin nerve fibers, suggesting that they might provide insight into specific axonal impairment in peripheral neuropathies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Degeneration of intraepidermal nerve fibers (IENF) is a hallmark of small fiber neuropathy of different etiology, whose clinical picture is dominated by neuropathic pain. It is unknown if critical illness can affect IENF. We enrolled 14 adult neurocritical care patients with prolonged intensive care unit (ICU) stay and artificial ventilation (≥ 3 days), and no previous history or risk factors for neuromuscular disease. All patients underwent neurological examination including evaluation of consciousness, sensory functions, muscle strength, nerve conduction study and needle electromyography, autonomic dysfunction using the finger wrinkling test, and skin biopsy for quantification of IENF and sweat gland innervation density during ICU stay and at follow-up visit. Development of infection, sepsis and multiple organ failure was recorded throughout the ICU stay. Of the 14 patients recruited, 13 (93%) had infections, sepsis or multiple organ failure. All had severe and non-length dependent loss of IENF. Sweat gland innervation was reduced in all except one patient. Of the 7 patients available for follow-up visit, three complained of diffuse sensory loss and burning pain, and another three showed clinical dysautonomia. Small fiber pathology can develop in the acute phase of critical illness and may explain chronic sensory impairment and pain in neurocritical care survivors. Its impact on long term disability warrants further studies involving also non-neurologic critical care patients.
    PLoS ONE 01/2013; 8(9):e75696. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is generally thought that class III β-tubulin expression is limited to cells of the neural lineage and is therefore often used to identify neurons amongst other cell types, both in vivo and in vitro. Melanocytes are derived from the neural crest and share both morphological features and functional characteristics with peripheral neurons. Here, we show that these similarities extend to class III β-tubulin (TUBB3) expression, and that human melanocytes express this protein both in vivo and in vitro. In addition, we studied the expression of class III β-tubulin in two murine melanogenic cell lines and show that expression of this protein starts as melanoblasts mature into melanocytes. Melanin bleaching experiments revealed close proximity between melanin and TUBB3 proteins. In vitro stimulation of primary human melanocytes by α-MSH indicated separate regulatory mechanisms for melanogenesis and to TUBB3 expression. Together, these observations imply that human melanocytes express TUBB3 and that this protein should be recognized as a wider marker for multiple neural crest-derived cells.
    Differentiation 06/2013; 85(4-5):173-181. · 2.86 Impact Factor
  • Source
    Pain 03/2014; · 5.64 Impact Factor