Article

Micropatterned composite membranes of polymerized and fluid lipid bilayers.

Special Division for Human Life Technology, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan.
Langmuir (Impact Factor: 4.38). 09/2004; 20(18):7729-35. DOI: 10.1021/la049340e
Source: PubMed

ABSTRACT Micropatterned composite membranes of polymerized and fluid lipid bilayers were constructed on solid substrates. Lithographic photopolymerization of a diacetylene-containing phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC), and subsequent removal of nonreacted monomers by a detergent solution (0.1 M sodium dodecyl sulfate (SDS)) yielded a patterned polymeric bilayer matrix on the substrate. Fluid lipid bilayers of phosphatidylcholine from egg yolk (egg-PC) were incorporated into the lipid-free wells surrounded by the polymeric bilayers through the process of fusion and reorganization of suspended small unilamellar vesicles. Spatial distribution of the fluid bilayers in the patterned bilayer depended on the degree of photopolymerization that in turn could be modulated by varying the applied UV irradiation dose. The polymeric bilayer domains blocked lateral diffusion of the fluid lipid bilayers and confined them in the defined areas (corrals), if the polymerization was conducted with a sufficiently large UV dose. On the other hand, lipid molecules of the fluid bilayers penetrated into the polymeric bilayer domains, if the UV dose was relatively small. A direct correlation was observed between the applied UV dose and the lateral diffusion coefficient of fluorescent marker molecules in the fluid bilayers embedded within the polymeric bilayer domains. Artificial control of lateral diffusion by polymeric bilayers may lead to the creation of complex and versatile biomimetic model membrane arrays.

0 Bookmarks
 · 
58 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on a methodology for immobilizing cytochrome P450 on the surface of micropatterned lipid bilayer membranes and measuring the enzymatic activity. The patterned bilayer comprised a matrix of polymeric lipid bilayers and embedded fluid lipid bilayers. The polymeric lipid bilayer domains act as a barrier to confine fluid lipid bilayers in defined areas and as a framework to stabilize embedded membranes. The fluid bilayer domains, on the other hand, can contain lipid compositions that facilitate the fusion between lipid membranes, and are intended to be used as the binding agent of microsomes containing rat CYP1A1. By optimizing the membrane compositions of the fluid bilayers, we could selectively immobilize microsomal membranes on these domains. The enzymatic activity was significantly higher on lipid bilayer substrates compared with direct adsorption on glass. Furthermore, competitive assay experiment between two fluorogenic substrates demonstrated the feasibility of bioassays based on immobilized P450s.
    Biochemical and Biophysical Research Communications 05/2007; 355(4):926-31. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A continuous-flow microspotter was used to generate planar arrays of stabilized bilayers composed of the polymerizable lipid bis-SorbPC and dopant lipids bearing ligands for proteins. Fluorescence microscopy was used to determine the uniformity of the bilayers and to detect protein binding. After UV-initiated polymerization, poly(lipid) bilayer microarrays were air-stable. Cholera toxin subunit b (CTb) bound to an array of poly(lipid) bilayers doped with GM(1), and the extent of binding was correlated to the mole percentage of GM(1) in each spot. A poly(lipid) bilayer array composed of spots doped with GM(1) and spots doped with biotin-DOPE specifically bound CTb and streptavidin to the respective spots from a dissolved mixture of the two proteins. Poly(bis-SorbPC)/GM(1) arrays retained specific CTb binding capacity after multiple regenerations with a protein denaturing solution and also after exposure to air. In addition, these arrays are stable in vacuum, which allows the use of MALDI-TOF mass spectrometry to detect specifically bound CTb. This work demonstrates the considerable potential of poly(lipid) bilayer arrays for high-throughput binding assays and lipidomics studies.
    ACS Applied Materials & Interfaces 06/2009; 1(6):1310-5. · 5.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Organic polymers are usually amorphous or possess very low crystallinity. The metal complexes of organic polymeric ligands are also difficult to crystallize by traditional methods because of their poor solubilities and their 3D structures can not be determined by single-crystal X-ray crystallography owing to a lack of single crystals. Herein, we report the crystal structure of a 1D Zn(II) coordination polymer fused with an organic polymer ligand made in situ by a [2+2] cycloaddition reaction of a six-fold interpenetrated metal-organic framework. It is also shown that this organic polymer ligand can be depolymerized in a single-crystal-to-single-crystal (SCSC) fashion by heating. This strategy could potentially be extended to make a range of monocrystalline metal organopolymeric complexes and metal-organic organopolymeric hybrid materials. Such monocrystalline metal complexes of organic polymers have hitherto been inaccessible for materials researchers.
    Angewandte Chemie International Edition 12/2013; · 11.34 Impact Factor