Article

Human PAD4 regulates histone arginine methylation levels via demethylimination

Cornell University, Итак, New York, United States
Science (Impact Factor: 31.48). 11/2004; 306(5694):279-83. DOI: 10.1126/science.1101400
Source: PubMed

ABSTRACT Methylation of arginine (Arg) and lysine residues in histones has been correlated with epigenetic forms of gene regulation. Although histone methyltransferases are known, enzymes that demethylate histones have not been identified. Here, we demonstrate that human peptidylarginine deiminase 4 (PAD4) regulates histone Arg methylation by converting methyl-Arg to citrulline and releasing methylamine. PAD4 targets multiple sites in histones H3 and H4, including those sites methylated by coactivators CARM1 (H3 Arg17) and PRMT1 (H4 Arg3). A decrease of histone Arg methylation, with a concomitant increase of citrullination, requires PAD4 activity in human HL-60 granulocytes. Moreover, PAD4 activity is linked with the transcriptional regulation of estrogen-responsive genes in MCF-7 cells. These data suggest that PAD4 mediates gene expression by regulating Arg methylation and citrullination in histones.

Full-text

Available from: Young-Ho Lee, Apr 02, 2015
1 Bookmark
 · 
157 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology.
    PLoS Genetics 01/2015; 11(1):e1004898. DOI:10.1371/journal.pgen.1004898 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Covalent histone modifications, chromatin remodeling and incorporation of histone variants regulate the dynamics of chromatin structure. Among covalent histone modifications, histone methylation mediates by histone methylases that influence the gene expression in heterochromatin silencing, genomic imprinting and transcription. In contrast to methylases, histone demethylases remove the methyl groups from lysine or arginine residues of histones and have enormous impact on gene expression via modified chromatin structures. Two types of histone lysie demethylases have been identified, including lysine specific demethylases 1 (LSD1) and Jmj (Jumonji) domain containing family proteins. The human demethyliminase (PADI4) converts monomethyl arginine residue to citrulline by the arginine demethylimination. In this review we summarize recent advances to understand the mechanism of demethylases in regulation of plant gene expression. In addition we are highlighting the function of four human like LSD1 (LDL) and jmj domain containing genes of Arabidopsis that regulate the defense related, flowering controlling and brassinosteroid response genes.
    Cellular and molecular biology (Noisy-le-Grand, France) 01/2014; 60(5):97-105. · 1.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we characterized the in vitro modulation of NETs (neutrophil extracellular traps) induced in human neutrophils by the opportunistic fungus Cryptococcus neoformans, evaluating the participation of capsular polysaccharides glucuronoxylomanan (GXM) and glucuronoxylomannogalactan (GXMGal) in this phenomenon. The mutant acapsular strain CAP67 and the capsular polysaccharide GXMGal induced NET production. In contrast, the wild-type strain and the major polysaccharide GXM did not induce NET release. In addition, C. neoformans and the capsular polysaccharide GXM inhibited PMA-induced NET release. Additionally, we observed that the NET-enriched supernatants induced through CAP67 yeasts showed fungicidal activity on the capsular strain, and neutrophil elastase, myeloperoxidase, collagenase and histones were the key components for the induction of NET fungicidal activity. The signaling pathways associated with NET induction through the CAP67 strain were dependent on reactive oxygen species (ROS) and peptidylarginine deiminase-4 (PAD-4). Neither polysaccharide induced ROS production however both molecules blocked the production of ROS through PMA-activated neutrophils. Taken together, the results demonstrate that C. neoformans and the capsular component GXM inhibit the production of NETs in human neutrophils. This mechanism indicates a potentially new and important modulation factor for this fungal pathogen.
    Scientific Reports 01/2015; 5:8008. DOI:10.1038/srep08008 · 5.08 Impact Factor