Developmental regulation of claudin localization by fetal alveolar epithelial cells

The Children's Hospital of Philadelphia, Filadelfia, Pennsylvania, United States
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.04). 12/2004; 287(6):L1266-73. DOI: 10.1152/ajplung.00423.2003
Source: PubMed

ABSTRACT Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm(2). In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm(2)). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Homeostasis of the central nervous system (CNS) microenvironment is maintained by the blood-brain barrier (BBB) which regulates the transport of molecules from blood into brain and back. Many disorders change the functionality and integrity of the BBB. Glucocorticoids are being used sucessfully in the treatment of some disorders while their effects on others are questionable. In addition, conflicting results between clinical and experimental experience using animal models has arisen, so that the results of molecular studies in animal models need to be revisited in an appropriate in vitro model of the human BBB for more effective treatment strategies. Using the human brain microvascular endothelial cell line hCMEC/D3, the influence of glucocorticoids on the expression of barrier constituting adherens junction and tight junction transmembrane proteins (VE-cadherin, occludin, claudins) was investigated and compared to other established BBB models. In hCMEC/D3 cells the administration of glucocorticoids induced expression of the targets occludin 2.75 +/- 0.04-fold and claudin-5 up to 2.32 +/- 0.11-fold, which is likely to contribute to the more than threefold enhancement of transendothelial electrical resistance reflecting barrier tightness. Our analyses further provide direct evidence that the GC hydrocortisone prevents endothelial barrier breakdown in response to pro-inflammatory stimuli (TNFalpha administration), which could be demonstrated to be partly based on maintenance of occludin levels. Our studies strongly suggest stabilization of BBB function as a mode of GC action on a molecular level in the human brain vasculature.
    The Journal of Physiology 05/2008; 586(7):1937-49. DOI:10.1113/jphysiol.2007.146852 · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously we determined that chronic alcohol ingestion (6 weeks) in rats increases lung epithelial permeability in vivo approximately 5-6-fold and promotes flooding of the alveolar airspaces with proteinaceous fluid in response to stresses such as sepsis. In parallel, alveolar epithelial cells isolated from alcohol-fed rats fail to form tight monolayers in vitro, even when cultured for up to 8 days in the absence of alcohol. However, the molecular mechanisms underlying alcohol-induced permeability are unknown. Claudins are key components of tight junctions that restrict the paracellular movement of water, proteins, and solutes across cellular barriers including the alveolar epithelium. In this study, we examined the expression of multiple members of the claudin protein family in the lungs of alcohol-fed versus control-fed rats (Lieber-DeCarli liquid diet with either 36% of calories as alcohol or an isocaloric substitution with maltin-dextrin for 6 weeks). We determined that chronic alcohol ingestion affected the expression of multiple claudins; most striking were decreases in claudin-1 and claudin-7, and an increase in claudin-5, in the whole lung and in alveolar epithelial monolayers derived from alcohol-fed rats. In parallel, immunocytochemistry of alveolar epithelial monolayers from alcohol-fed rats revealed abnormal intracellular accumulation of claudin-7 protein and relatively decreased localization to cell membranes. Claudin-1 and claudin-7 are relatively specific to alveolar epithelial type I pneumocytes that form the vast majority of the alveolar epithelial barrier in vivo, and increases in claudin-5 have been associated with increased epithelial permeability in other systems. Therefore, these findings suggest that changes in claudin expression in the alveolar epithelium produce a "leakier" phenotype that renders the alcoholic lung susceptible to alveolar flooding during acute inflammatory stresses.
    Alcohol 09/2007; 41(5):371-9. DOI:10.1016/j.alcohol.2007.04.010 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Claudins are a family of transmembrane proteins that are required for tight junction formation. Claudin 18.1, the only known lung-specific tight junction protein, is the most abundant claudin in type 1 alveolar epithelial cells (AT1) and is regulated by lung maturational agonists and inflammatory mediators. To determine the function of claudin-18 in the alveolar epithelium, claudin-18 knockout (CLDN18 KO) mice were generated and studied by histological, biochemical, and physiological approaches in addition to whole genome microarray. Alveolar epithelial barrier function was assessed after knockdown of claudin-18 in isolated lung cells. Claudin-18 levels were measured by qPCR in lung samples from fetal and postnatal human infants. We found that claudin-18 deficiency impaired alveolar epithelial barrier function in vivo and in vitro, with evidence of increased paracellular permeability and architectural distortion at AT1-AT1 cell junctions. Although CLDN18 KO mice were born without evidence of a lung abnormality, histological and gene expression analysis at postnatal 3 days and 4 weeks identified impaired alveolarization. CLDN18 KO mice also had evidence of postnatal lung injury, including acquired AT1 cell damage. Human fetal lungs at 23-24 weeks gestational age, the highest risk period for developing bronchopulmonary dysplasia (BPD), a disease of impaired alveolarization, had significantly lower claudin-18 expression relative to postnatal lungs. Thus, claudin-18 deficiency results in epithelial barrier dysfunction, injury, and impaired alveolarization in mice. Low expression of claudin-18 in human fetal lungs supports further investigation into a role for this tight junction protein in BPD.
    American Journal of Respiratory Cell and Molecular Biology 05/2014; DOI:10.1165/rcmb.2013-0456OC · 4.11 Impact Factor