Article

Complex social behaviour can select for variability in visual features: a case study in Polistes wasps.

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
Proceedings of the Royal Society B: Biological Sciences (Impact Factor: 5.68). 10/2004; 271(1551):1955-60. DOI: 10.1098/rspb.2004.2784
Source: PubMed

ABSTRACT The ability to recognize individuals is common in animals; however, we know little about why the phenotypic variability necessary for individual recognition has evolved in some animals but not others. One possibility is that natural selection favours variability in some social contexts but not in others. Polistes fuscatus wasps have variable facial and abdominal markings used for individual recognition within their complex societies. Here, I explore whether social behaviour can select for variability by examining the relationship between social behaviour and variability in visual features (marking variability) across social wasp taxa. Analysis using a concentrated changes test demonstrates that marking variability is significantly associated with nesting strategy. Species with flexible nest-founding strategies have highly variable markings, whereas species without flexible nest-founding strategies have low marking variability. These results suggest that: (i) individual recognition may be widespread in the social wasps, and (ii) natural selection may play a role in the origin and maintenance of the variable distinctive markings. Theoretical and empirical evidence suggests that species with flexible nesting strategies have reproductive transactions, a type of complex social behaviour predicted to require individual recognition. Therefore, the reproductive transactions of flexible species may select for highly variable individuals who are easy to identify as individuals. Further, selection for distinctiveness may provide an alternative explanation for the evolution of phenotypic diversity.

0 Bookmarks
 · 
96 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animals can influence their social environment by preferentially associating with certain conspecifics. Such preferential association has gained increasing theoretical attention, as it may influence social evolution and population dynamics. However, relatively little empirical work has examined the occurrence of preferential association and its effects on cooperative group formation. Here, we test the factors associated with cooperative group formation in Polistes dominulus nest-founding queen wasps. P. dominulus are a good system to study preferential association, as foundresses can nest alone or in groups and group membership is flexible. We found that both social and environmental factors were associated with partner choice. First, facial patterns were associated with cooperation. Wasps with more similar facial patterns were more likely to cooperate than wasps with less similar facial patterns. This preferential phenotypic association fits the theoretical criteria for the evolution of tag-based cooperation. Season was also associated with cooperation; wasps on early-season nests were more likely to cooperate than wasps on late-season nests. High levels of aggression by nest owners during initial interactions were also correlated with lower probabilities of subsequent cooperation, suggesting that nest owners have some control over group membership. Other factors including body weight, weight similarity and nest productivity were not linked with cooperation. Overall, multiple factors influence cooperation in paper wasps, including facial pattern similarity. The occurrence of preferential phenotypic association in paper wasps is quite interesting and may influence the evolution of cooperation and population divergence in this group.
    Journal of Evolutionary Biology 09/2013; · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To be effective, signals must propagate through the environment and be detected by receivers. As a result, signal form evolves in response to both the constraints imposed by the transmission environment and receiver perceptual abilities. Little work has examined the extent to which signals may act as selective forces on receiver sensory systems to improve the efficacy of communication. If receivers benefit from accurate signal assessment, selection could favour sensory organs that improve discrimination of established signals. Here, we provide evidence that visual resolution coevolves with visual signals in Polistes wasps. Multiple Polistes species have variable facial patterns that function as social signals, whereas other species lack visual signals. Analysis of 19 Polistes species shows that maximum eye facet size is positively associated with both eye size and presence of visual signals. Relatively larger facets within the eye's acute zone improve resolution of small images, such as wasp facial signals. Therefore, sensory systems may evolve to optimize signal assessment. Sensory adaptations to facilitate signal detection may represent an overlooked area of the evolution of animal communication.
    Biology letters 01/2014; 10(4):20140254. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In many complex societies, intricate communication and recognition systems may evolve to help support both direct and indirect benefits of group membership. In cooperatively breeding species where groups typically comprise relatives, both learned and innate vocal signals may serve as reliable cues for kin recognition. Here, we investigated vocal communication in the plural cooperatively breeding superb starling, Lamprotornis superbus, where flight calls-short, stereotyped vocalizations used when approaching conspecifics-may communicate kin relationships, group membership, and/or individual identity. We found that flight calls were most similar within individual repertoires but were also more similar within groups than within the larger population. Although starlings responded differently to playback of calls from their own versus other neighboring and distant social groups, call similarity was uncorrelated with genetic relatedness. Additionally, immigrant females showed similar patterns to birds born in the study population. Together, these results suggest that flight calls are learned signals that reflect social association but may also carry a signal of individuality. Flight calls, therefore, provide a reliable recognition mechanism for groups and may also be used to recognize individuals. In complex societies comprising related and unrelated individuals, signaling individuality and group association, rather than kinship, may be a route to cooperation.
    Behavioral Ecology 01/2013; 24(6):1279-1285. · 3.22 Impact Factor

Full-text

Download
0 Downloads