A de novo LGI1 mutation in sporadic partial epilepsy with auditory features.

Annals of Neurology (Impact Factor: 11.19). 10/2004; 56(3):455-6. DOI: 10.1002/ana.20218
Source: PubMed
  • [Show abstract] [Hide abstract]
    ABSTRACT: PURPOSE: In relatively small series, autosomal dominant lateral temporal epilepsy (ADLTE) has been associated with leucine-rich, glioma-inactivated 1 (LGI1) mutations in about 50% of the families, this genetic heterogeneity being probably caused by differences in the clinical characteristics of the families. In this article we report the overall clinical and genetic spectrum of ADLTE in Italy with the aim to provide new insight into its nosology and genetic basis. METHODS: In a collaborative study of the Commission of Genetics of the Italian League Against Epilepsy (LICE) encompassing a 10-year period (2000-2010), we collected 33 ADLTE families, selected on the basis of the following criteria: presence of at least two members concordant for unprovoked partial seizures with prominent auditory and or aphasic symptoms, absence of any known structural brain pathology or etiology, and normal neurologic examination. The clinical, neurophysiologic, and neuroradiologic findings of all patients were analyzed and a genealogic tree was built for each pedigree. The probands' DNA was tested for LGI1 mutations by direct sequencing and, if negative, were genotyped with single-nucleotide polymorphism (SNP) array to search for disease-linked copy-number variation CNV. The disease penetrance in mutated and nonmutated families was assessed as a proportion of obligate carriers who were affected. KEY FINDINGS: The 33 families included a total of 127 affected individuals (61 male, 66 female, 22 deceased). The age at onset ranged between 2 and 60 years (mean 18.7 years). Ninety-one patients (72%) had clear-cut focal (elementary, complex, or secondarily generalized) seizures, characterized by prominent auditory auras in 68% of the cases. Other symptoms included complex visual hallucinations, vertigo, and déjà vu. Aphasic seizures, associated or not with auditory features, were observed in 20% of the cases, whereas tonic-clonic seizures occurred in 86% of the overall series. Sudden noises could precipitate the seizures in about 20% of cases. Seizures, which usually occurred at a low frequency, were promptly controlled or markedly improved by antiepileptic treatment in the majority of patients. The interictal electroencephalography (EEG) studies showed the epileptiform temporal abnormalities in 62% of cases, with a slight predominance over the left region. Magnetic resonance imaging (MRI) or computerized tomography (CT) scans were negative. LGI1 mutations (missense in nine and a microdeletion in one) were found in only 10 families (30%). The patients belonging to the mutated and not mutated groups did not differ except for penetrance estimate, which was 61.3% and 35% in the two groups, respectively (chi-square, p = 0.017). In addition, the disease risk of members of families with mutations in LGI1 was three times higher than that of members of LGI1-negative families (odds ratio [OR] 2.94, confidence interval [CI] 1.2-7.21). SIGNIFICANCE: A large number of ADLTE families has been collected over a 10-year period in Italy, showing a typical and homogeneous phenotype. LGI1 mutations have been found in only one third of families, clinically indistinguishable from nonmutated pedigrees. The estimate of penetrance and OR, however, demonstrates a significantly lower penetrance rate and relative disease risk in non-LGI1-mutated families compared with LGI1-mutated pedigrees, suggesting that a complex inheritance pattern may underlie a proportion of these families.
    Epilepsia 04/2013; · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new leucine-rich glioma-inactivated 1 gene (LGI1) mutation inducing an amino acid sequence substitution was found in a Korean family with autosomal dominant lateral temporal lobe epilepsy (ADLTE). We report the clinical features and characteristics of this newly identified LGI1 mutation. Clinical data were collected from a large ADLTE family. All exons and flanking regions of the LGI1 gene were directly sequenced. 243 healthy controls were screened for the putative mutation. The 'Sorting Tolerant From Intolerant' algorithm was employed for the prediction of mutated LGI1 protein stability. LGI1 protein secretion was confirmed in vitro by immunoblotting assay. The main clinical characteristics included a young age at onset (mean, 12.4 years), diverse phenotypic manifestations, the occurrence of generalized tonic-clonic seizures, and a favorable prognosis. The genetic analysis detected a nonsynonymous single nucleotide polymorphism of c.137G>T coding for p.C46F in the five affected family members. This variant was not found in the normal control population and one unaffected family member. All the amino acids substituted for cysteine at position 46 of the LGI1 protein were predicted to damage protein stability in in silico analysis. Mutated C46F protein was retained within the cell at the immunoblotting assay. We identified a new LGI1 mutation in a large Korean ADLTE family which appeared to be involved in the development of epilepsy through suppressing LGI1 protein secretion.
    Seizure 10/2013; · 2.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To clinically and genetically characterize a large Brazilian family with autosomal dominant partial epilepsy with auditory features (ADPEAF) not related to leucine-rich, glioma-inactivated 1 (LGI1) gene. Seventy family members (four married-ins) participating in the study were assessed by a detailed clinical interview and a complete neurologic examination. Genetic mapping was conducted through autosome-wide single nucleotide polymorphism (SNP) genotyping and subsequent linkage analysis on 16 and haplotype analysis on 25 subjects, respectively. The pedigree comprised 15 affected members, of whom 11 were included in the study (male/female: 6/5; mean age 39.5 years). All but two (III:22 and IV:92) had focal seizures with auditory aura followed by secondary generalization in 44.4%. The mean age at onset of epilepsy seizures was 13.7 years. Initial autosome-wide SNP linkage analysis conducted on 12 subjects (8 affected) pointed to a single genomic region on chromosome 19 with a maximum multipoint logarithm of the odds (LOD) score of 2.60. Further refinement of this region through SNP and microsatellite genotyping on 16 subjects (11 affected) increased the LOD score to 3.41, thereby establishing 19q13.11-q13.31 as a novel ADPEAF locus. Haplotype analysis indicated that the underlying mutation is most likely located in a 9.74 Mb interval between markers D19S416 and D19S420. Sequence analysis of the most prominent candidate genes within this critical interval (SCN1B, LGI4, KCNK6, and LRFN1) did not reveal any mutation. This study disclosed a novel ADPEAF locus on chromosome 19q13.11-q13.31, contributing to future identification of a second dominant gene for this epileptic syndrome. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
    Epilepsia 03/2014; · 3.96 Impact Factor