Article

Effect of manipulation of iron storage, transport, or availability on myelin composition and brain iron content in three different animal models

Biological Chemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
Journal of Neuroscience Research (Impact Factor: 2.73). 09/2004; 77(5):681-9. DOI: 10.1002/jnr.20207
Source: PubMed

ABSTRACT Several observations suggest that iron is an essential factor in myelination and oligodendrocyte biology. However, the specific role of iron in these processes remains to be elucidated. This role could be as an essential cofactor in metabolic processes or as a transcriptional or translational regulator. In this study, we used animals models each with a unique defect in iron availability, storage, or transfer to test the hypothesis that disruptions in these mechanisms affect myelinogenesis and myelin composition. Disruption of iron availability either by limiting dietary iron or by altering iron storage capacity resulted in a decrease in myelin proteins and lipids but not the iron content of myelin. Among the integral myelin proteins, proteolipid protein was most consistently affected, suggesting that limiting iron to oligodendrocytes results not only in hypomyelination but also in a decrease in myelin compaction. Mice deficient in transferrin must receive transferrin injections beginning at birth to remain viable, and these mice had increases in all of the myelin components and in the iron content of the myelin. This finding indicates that the loss of endogenous iron mobility in oligodendrocytes could be overcome by application of exogenous transferrin. Overall, the results of this study demonstrate how myelin composition can be affected by loss of iron homeostasis and reveal specific chronic changes in myelin composition that may affect behavior and attempts to rescue myelin deficits.

0 Followers
 · 
41 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Maternal infection is a risk factor for schizophrenia but the molecular and cellular mechanisms are not fully known. Myelin abnormalities are amongst the most robust neuropathological changes observed in schizophrenia, and preliminary evidence suggests that prenatal inflammation may play a role. Methods: Label-free liquid chromatography-mass spectrometry was performed on the prefrontal cortex (PFC) of adult rat offspring born to dams that were exposed on gestational day 15 to the viral mimic polyinosinic:polycytidylic acid [poly(I:C), 4 mg/kg] or saline and treated with the atypical antipsychotic drug risperidone (0.045 mg/kg) or saline in adolescence. Western blotting was employed to validate protein changes. Results: Over 1,000 proteins were quantified in the PFC with pathway analyses implicating changes in core metabolic pathways, following prenatal poly(I:C) exposure. Some of these protein changes were absent in the PFC of poly(I:C)-treated offspring that subsequently received risperidone treatment in adolescence. Particularly interesting reductions in the expression of the myelin-related proteins myelin basic protein isoform 3 (MBP1) and rhombex 29 were observed, which were reversed by risperidone treatment. Validation by Western blotting confirmed changes in MBP1 and mitogen-activated kinase 1 (MAPK1). Western blotting was extended to assess the MAPK signalling proteins due to their roles in inflammation, namely phosphorylated MAPK1 and phosphorylated MAPK-activated protein kinase 2. Both were upregulated by poly(I:C) treatment and reversed by risperidone treatment. Conclusions: Overall, our data suggest that maternal inflammation may contribute to an increased risk for schizophrenia through mechanisms involving metabolic function and myelin formation and that risperidone in adolescence may prevent or reverse such changes. © 2015 S. Karger AG, Basel.
    Developmental Neuroscience 01/2015; DOI:10.1159/000368305 · 2.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Restless legs syndrome (RLS) is a sleep-related sensory-motor disorder characterized by an irresistible urge to move the legs accompanied by unpleasant sensations in the lower extremities. According to many recent studies patients with multiple sclerosis (MS) suffer frequently from symptoms of RLS. The prevalence of RLS in MS patients varies 13.3%-65.1%, which is higher than the prevalence of RLS in people of the same age in the general population. MS patients with RLS have higher scores in the Expanded Disability Status Scale compared to MS patients without RLS. Presence of RLS has a negative impact on sleep quality and fatigue of MS patients. Iron deficiency and chronic inflammation may be factors contributing to development of RLS in MS. The relationship between the course and treatment of MS and RLS requires further prospective studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Sleep Medicine Reviews 10/2014; DOI:10.1016/j.smrv.2014.10.002 · 9.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dikkat eksikliği ve hiperaktivite bozukluğu, tıp literatüründe en iyi araştırılmış bozukluklardan biri olmasına rağmen, etiyolojisi halen net olarak açıklığa kavuşturulamamıştır. Dikkat eksikliği ve hiperaktivite bozukluğu’nun küratif şekilde tedavi edilmesi için bozukluk ile ilişkili etmenlerin net olarak aydınlatılması oldukça önemlidir. Literatür incelendiğinde, demir eksikliğinin dikkat eksikliği ve hiperaktivite bozukluğu patofizyolojisi için bir risk faktörü olabileceği belirtilmekle birlikte, konu ile ilgili şu ana kadar yapılan çalışmalarda çelişkili sonuçlar elde edildiği gözlenmektedir. Bu yazıda, dikkat eksikliği ve hiperaktivite bozukluğu patofizyolojisinde etkili olduğu düşünülen demir ve demirle ilişkili parametrelerin kan düzeyleri ile ilgili literatürdeki, çocuk ve ergen yaş grubunda, ülkemizde ve yurt dışında yapılmış konu ile ilgili çalışmaların incelenmesi, genel özelliklerinin derlenmesi ve sonuçlarının sunulması amaçlanmıştır.
    Psikiyatride Guncel Yaklasimlar 12/2014; 2015(7(1)):41-55.