Article

Expression and characterization of cholera toxin B-pneumococcal surface adhesin A fusion protein in Escherichia coli: ability of CTB-PsaA to induce humoral immune response in mice.

Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 09/2004; 321(1):192-6. DOI: 10.1016/j.bbrc.2004.06.118
Source: PubMed

ABSTRACT Cholera toxin B subunit (CTB) is responsible for CT holotoxin binding to the cell and has been described as a mucosal adjuvant for vaccines. In this work, the ctxB gene was genetically fused to the psaA gene from Streptococcus pneumoniae, a surface protein involved in its colonization in the host that is also considered a vaccine antigen candidate against this pathogen. The CTB-PsaA fusion protein was expressed in Escherichia coli, and the purified protein was used for intranasal immunization experiments in Balb/C mice. CTB-PsaA was able to induce both systemic and mucosal antibodies evaluated in serum, saliva, and in nasal and bronchial wash samples, showing that CTB-PsaA is a promising molecule to be investigated as S. pneumoniae vaccine antigen candidate.

0 Bookmarks
 · 
67 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The production of recombinant proteins is an essential tool for the expansion of modern biological research and biotechnology. The expression of heterologous proteins in E. coli often results in an incomplete folding process that leads to the accumulation of inclusion bodies (IB), aggregates that hold a certain degree of native-like secondary structure. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, leading to dissociation of aggregates under non-denaturing conditions and is therefore a useful tool to solubilize proteins for posterior refolding. Cholera toxin (CT) is composed of a non-toxic pentamer of B subunits (CTB), a useful adjuvant in vaccines, and a toxic subunit A (CTA). We studied the process of refolding of CTB using HHP. HHP was shown to be effective for dissociation of CTB monomers from IB. Posterior incubation at atmospheric pressure of concentrated CTB (1mg/ml) is necessary for the association of the monomers. Pentameric CTB was obtained when suspensions of CTB IB were compressed at 2.4kbar for 16hours in the presence of Tween 20 and incubated at 1bar for 120h. Soluble and biologically active pentameric CTB was obtained, with a yield of 213mg CTB/liter of culture. The experience gained in this study can be important to improve the refolding of proteins with quaternary structure.
    Journal of Biotechnology 01/2014; · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the immunogenic properties of the fusion protein fimbria 2 of Bordetella pertussis (Fim2)—cholera toxin B subunit (CTB) in the intranasal murine model of infection. To this end B. pertussis Fim2 coding sequence was cloned downstream of the cholera toxin B subunit coding sequence. The expression and assembly of the fusion protein into pentameric structures (CTB- Fim2) were evaluated by SDS-PAGE and monosialotetrahexosylgaglioside (GM1-ganglioside) enzyme-linked immunosorbent assay (ELISA). To evaluate the protective capacity of CTB-Fim2, an intraperitoneal or intranasal mouse immunization schedule was performed with 50 𝜇g of CTB-Fim2. Recombinant (rFim2) or purified (BpFim2) Fim2, CTB, and phosphate-buffered saline (PBS) were used as controls. The results showed that mice immunized with BpFim2 or CTB-Fim2 intraperitoneally or intranasally presented a significant reduction in bacterial lung counts compared to control groups (𝑃 < 0.01 or 𝑃 < 0.001, resp.). Moreover, intranasal immunization with CTB-Fim2 induced significant levels of Fim2-specific IgG in serum and bronchoalveolar lavage (BAL) and Fim2-specific IgA in BAL. Analysis of IgG isotypes and cytokines mRNA levels showed that CTB-Fim2 results in a mixed Th1/Th2 (T-helper) response. The data presented here provide support for CTB-Fim2 as a promising recombinant antigen against Bordetella pertussis infection.
    BioMed Research International 05/2014; 2014(Article ID 421486). · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sequence variations in glycoproteins of influenza virus surface impel us to design new candidate vaccines yearly. Ectodomain of influenza M2 protein is a surface and highly conserved protein. M2e in influenza vaccines may eliminate the need for changing vaccine formulation every year. In this study, a recombinant baculovirus containing M2e and cholera toxin subunit B fusion gene was generated with transposition process to express in large amounts in insect cell lines. M2e-ctxB fusion gene was created and cloned into pFastBac HT. The recombinant vector was transformed into DH10Bac cells to introduce the fusion gene into the bacmid DNA via a site-specific transposition process. The recombinant bacmid was then extracted from white colonies and further analyzed using PCR, DNA sequence analyzing, and indirect immunofluorescence assay. PCR and DNA sequence analyzing results showed that the fusion gene was constructed as a single open reading frame and was successfully inserted into bacmid DNA. Moreover, indirect immunofluorescence results showed that the fusion gene was successfully expressed. Baculovirus expression vector system is valuable to produce M2e based influenza vaccines due to its simple utilization and ease of target gene manipulation. The expressed protein in such systems can improve the evaluating process of new vaccination strategies.
    Iranian Red Crescent medical journal. 02/2014; 16(2):e13176.