Aquaporin homologues in plants and mammals transport ammonia

IT University of Copenhagen, København, Capital Region, Denmark
FEBS Letters (Impact Factor: 3.34). 10/2004; 574(1-3):31-6. DOI: 10.1016/j.febslet.2004.08.004
Source: PubMed

ABSTRACT Using functional complementation and a yeast mutant deficient in ammonium (NH4+) transport (Deltamep1-3), three wheat (Triticum aestivum) TIP2 aquaporin homologues were isolated that restored the ability of the mutant to grow when 2 mM NH4+ was supplied as the sole nitrogen source. When expressed in Xenopus oocytes, TaTIP2;1 increased the uptake of NH4+ analogues methylammonium and formamide. Furthermore, expression of TaTIP2;1 increased acidification of the oocyte-bathing medium containing NH4+ in accordance with NH3 diffusion through the aquaporin. Homology modeling of TaTIP2;1 in combination with site directed mutagenesis suggested a new subgroup of NH3-transporting aquaporins here called aquaammoniaporins. Mammalian AQP8 sharing the aquaammoniaporin signature also complemented NH4+ transport deficiency in yeast.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2), cause oxidative cell damage and inhibit sperm function. In most oviparous fishes that spawn in seawater (SW), spermatozoa may be exposed to harmful ROS loads associated with the hyperosmotic stress of axonemal activation and ATP synthesis from mitochondrial oxidative phosphorylation. However, it is not known how marine spermatozoa can cope with the increased ROS levels to maintain flagellar motility. Here, we show that a marine teleost orthologue of human aquaporin-8, termed Aqp8b, is rapidly phosphorylated and inserted into the inner mitochondrial membrane of SW-activated spermatozoa, where it facilitates H2O2 efflux from this compartment. When Aqp8b intracellular trafficking and mitochondrial channel activity are immunologically blocked in activated spermatozoa, ROS levels accumulate in the mitochondria leading to mitochondrial membrane depolarisation, the reduction of ATP production, and the progressive arrest of sperm motility. However, the decreased sperm vitality underlying Aqp8b loss of function is fully reversed in the presence of a mitochondria-targeted antioxidant. These findings reveal a previously unknown detoxification mechanism in spermatozoa under hypertonic conditions, whereby mitochondrial Aqp8b-mediated H2O2 efflux permits fuel production and the maintenance of flagellar motility.
    Scientific Reports 01/2015; 5:7789. DOI:10.1038/srep07789 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn's disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is significantly reduced in patients with IBD, and they are differentially expressed in specific bowel segments in patients with Crohn's disease and ulcerative colitis. The data present a link between gut inflammation and water/solute homeostasis, suggesting that AQPs may play a significant role in IBD pathophysiology.
    Clinical and Experimental Gastroenterology 01/2015; 8:49-67. DOI:10.2147/CEG.S70119
  • Canadian Journal of Plant Science 08/2014; 94(6):1085-1089. DOI:10.4141/cjps2013-143 · 0.92 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014