Anti-leishmanial activity of a new formulation of amphotericin B.

Departamento de Parasitología, Universidad Complutense, Madrid, Spain.
Tropical Medicine & International Health (Impact Factor: 2.3). 10/2004; 9(9):981-90. DOI: 10.1111/j.1365-3156.2004.01296.x
Source: PubMed

ABSTRACT The effectiveness of albumin microspheres loaded with amphotericin B was tested in an in vivo model of visceral leishmaniasis using the golden hamster. Free and encapsulated amphotericin B was tested at the dose of 1 mg/kg given by the intracardiac route on days 25, 26 and 27 post-infection (p.i.) to treat animals previously infected with 10(7) stationary promastigotes by the intracardiac route. Encapsulated amphotericin was highly effective against infection causing a reduction of 88.8% and 87.2% in the early stage of infection (day 32 p.i.) and of 66.7% and 54% in a later stage of infection (day 135 p.i.) in liver and spleen parasite load respectively, compared with untreated animals, whereas free amphotericin was inactive. Lymphocyte proliferation was restored together with an increase in CD4(+) subsets in animals treated with encapsulated amphotericin B, but not in those treated with the non-encapsulated compound. Antibody responses did not increase after treatment with encapsulated amphotericin B with antibody levels remaining at base levels for most animals in contrast to those of untreated or treated with free amphotericin, where in most animals the antibody levels sharply increased. This new formulation could be a more economical alternative to liposomes for the treatment of visceral leishmaniasis with amphotericin B.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leishmaniasis is caused by protozoan parasites of the genus Leishmania and causes a wide spectrum of clinical manifestations ranging from self-healing cutaneous lesions to the fatal visceral form. The use of pentavalent antimony, the mainstay of therapy of Leishmaniasis is now limited by its toxicity and alarming increase in unresponsiveness, especially in the Indian subcontinent. Furthermore, other anti-leishmanial drugs are unaffordable in many affected countries and as vaccination based approaches have not yet proved to be effective, chemotherapy remains the only alternative, emphasizing the need for identifying novel drug targets. In this review, we have described the different host immune signaling pathways that could be considered as potential drug targets for Leishmania chemotherapy.
    International immunopharmacology 08/2011; 11(11):1668-79. · 2.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work we introducing a soft magnetic keeper layer to a word line and optimizing the shape of the word line.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Targeted cargo delivery systems can overcome drawbacks associated with antileishmanials delivery, by defeating challenges of physiological barriers. Various colloidal particulate systems have been developed in the past; few of them even achieved success in the market, but still are limited in some ways. Areas covered: This review is focused on the pathobiology of leishmaniasis, interactions of particulate systems with biological environment, targeting strategies along with current conventional and vaccine therapies with special emphasis on polymeric nanotechnology for effective antileishmanial cargo delivery. Expert opinion: The problems concerned with limited accessibility of chemotherapeutic cargos in conventional modes to Leishmania-harboring macrophages, their toxicity, and resistant parasitic strain development can be sorted out through target-specific delivery of cargos. Vaccination is another therapeutic approach employing antigen alone or adjuvant combinations delivered by means of a carrier, and can provide preventive measures against human leishmaniasis (HL). Therefore, there is an urgent need of designing site-specific antileishmanial cargo carriers for safe and effective management of HL. Among various colloidal carriers, polymeric particulate systems hold tremendous potential as an effective delivery tool by providing control over spatial and temporal distribution of cargos after systemic or localized administration along with enhancing their stability profile at a comparatively cost-effective price leading to improved chances of commercial applicability.
    Expert Opinion on Drug Delivery 10/2013; · 4.87 Impact Factor

Full-text (2 Sources)

Available from
Oct 23, 2014