Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2).

Department of Anesthesia and Perioperative Care, University of California, San Francisco, 513 Parnassus Ave., Room S-261, Box 0542, San Francisco, CA 94143, USA.
Molecular Brain Research (Impact Factor: 2). 10/2004; 128(2):112-20. DOI: 10.1016/j.molbrainres.2004.06.007
Source: PubMed

ABSTRACT The TWIK-related, Acid Sensing K (TASK-2; KCNK5) potassium channel is a member of the tandem pore (2P) family of potassium channels and mediates an alkaline pH-activated, acid pH-inhibited, outward-rectified potassium conductance. In previous work, we demonstrated TASK-2 protein expression in newborn rat cerebellar granule neurons (CGNs). In this study, we demonstrate TASK-2 functional expression in CGNs as a component of the pH-sensitive, volatile anesthetic-potentiated, standing-outward potassium conductance (I(K,SO)). Using excised, inside-out patch-clamp technique, we studied CGNs grown in primary culture. We identified four distinct, noninactivating single channel potassium conductances, Types 1-4. Types 1-3 have previously been attributed to TASK-1 (KCNK3), TASK-3 (KCNK9) and TASK-1/TASK-3 heteromers, and TREK-2 (KCNK10) 2P potassium channel function, respectively; however, the Type 4 conductance is currently unassigned. Previous studies demonstrated that Type 4 single channel activity is potentiated by extracellular, alkaline pH and cytoplasmic arachidonic acid (10-20 microM) and inhibited by cytoplasmic tetraethylammonium (TEA; 1 mM). We determined that heterologously expressed TASK-2 channels have single channel gating, conductance properties and pH sensitivity identical to the Type 4 conductance. Additionally, we found that TASK-2 single channel activity, like the Type 4 conductance is potentiated by cytoplasmic arachidonic acid (20 microM) and inhibited by cytoplasmic TEA (1 mM). We conclude that TASK-2 mediates the Type 4 single channel conductance in CGNs as a component of I(K,SO).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K (+) channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K (+) channels in pancreatic duct cells, including KCNN4 (KCa 3.1), KCNMA1 (KCa 1.1), KCNQ1 (Kv 7.1), KCNH2 (Kv 11.1), KCNH5 (Kv 10.2), KCNT1 (KCa 4.1), KCNT2 (KCa 4.2), and KCNK5 (K 2P 5.1). We will give an overview of K (+) channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K (+) channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K (+) channels may be of importance.
    Channels (Austin, Tex.) 08/2013; 7(6). DOI:10.4161/chan.26100 · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TASK channels belong to the family of K(+) channels with 4 transmembrane segments and 2 pore domains (4TM/2P) per subunit. These channels have been related to apoptosis in cerebellar granule neurons (CGN), as well as cancer in other tissues. TASK current is regulated by hormones, neurotransmitters, anesthetics and divalent cations, which are not selective. Recently, there has been found some organic compounds that inhibit TASK current selectively. In order to find other modulators, we report here a group of five dihydropyrrolo[2,1-a]isoquinolines (DPIs), four of them with putative anticancer activity, that were evaluated on TASK-1 and TASK-3 channels. The compounds 1, 2 and 3 showed IC50 <320 μM on TASK-1 and TASK-3, intermediate activity on TASK-1/TASK-3 heterodimer, moderate effect over hslo and TREK-1 (500 μM), and practically not inhibition on Shaker-IR, herg and IRK2.1 potassium channels, when they were expressed heterologously in Xenopus laevis oocytes. In rat CGN, 500 μM of these three compounds induced a decrement by >39% of the TASK-carried leak current. Finally, only compound 1 showed significant protection (∼36%) against apoptotic death of CGN induced by K(+) deprivation. These results suggest that DPI compounds could be potential candidates for designing new selective inhibitors of TASK channels.
    Neuropharmacology 11/2013; 79. DOI:10.1016/j.neuropharm.2013.10.028 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dipeptidyl Peptidase-like Protein 6 (DPP6) is widely expressed in the brain where it co-assembles with Kv4 channels and KChIP auxiliary subunits to regulate the amplitude and functional properties of the somatodendritic A-current, ISA. Here we show that in cerebellar granule (CG) cells DPP6 also regulates resting membrane potential and input resistance by increasing the amplitude of the IK(SO) resting membrane current. Pharmacological analysis shows that DPP6 acts through the control of a channel with properties matching the K2P channel TASK-3. Heterologous expression and co-immunoprecipitation shows that DPP6 co-expression with TASK-3 results in the formation of a protein complex that enhances resting membrane potassium conductance. The co-regulation of resting and voltage-gated channels by DPP6 produces coordinate shifts in resting membrane potential and A-current gating that optimize the sensitivity of ISA inactivation gating to subthreshold fluctuations in resting membrane potential.
    PLoS ONE 04/2013; 8(4):e60831. DOI:10.1371/journal.pone.0060831 · 3.53 Impact Factor