Article

Roles of fascin in cell adhesion and motility.

Dept of Cell Biology, NC1-110, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA.
Current Opinion in Cell Biology (Impact Factor: 8.74). 11/2004; 16(5):590-6. DOI: 10.1016/j.ceb.2004.07.009
Source: PubMed

ABSTRACT Many cell interactions depend on the assembly of cell protrusions; these include cell attachment and migration in the extracellular matrix, cell-cell communication, and the ability of cells to sense their local environment. Cell protrusions are extensions of the plasma membrane that are supported internally by actin-based structures that impart mechanical stiffness. Fascin is a small, globular actin-bundling protein that has emerging roles in diverse forms of cell protrusions and in cytoplasmic actin bundles. The fascin-actin interaction is under complex regulation from the extracellular matrix, peptide factors and other actin-binding proteins. Recent developments advance our understanding of the multifaceted regulation of fascin and the roles of fascin-containing structures in cell adhesion, motility and invasion in the life of vertebrate organisms.

1 Bookmark
 · 
79 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-6 mediated activation of Stat3 (Signal Transducer and Activator of Transcription 3) is a major signaling pathway in the process of breast cancer metastasis. One important mechanism by which the IL-6/STAT3 pathway promotes metastasis is through transcriptional regulation of the actin-bundling protein fascin. In this study, we further analyzed the transcriptional regulation of the fascin gene promoter. We show that in addition to IL-6, TNF-α increases Stat3 and NFκB binding to the fascin promoter to induce its expression. We also show that NFκB is required for Stat3 recruitment to the fascin promoter in response to IL-6. Furthermore, Stat3 and NFκB form a protein complex in response to cytokine stimulation. Finally, we demonstrate that an overlapping STAT/NFκB site in a highly conserved 160 bp region of the fascin promoter is sufficient and necessary to induce transcription in response to IL-6 and TNF-α.
    The Journal of biological chemistry. 09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.
    PLoS ONE 12/2014; · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background:A major therapeutic challenge for breast cancer is the ability of cancer cells to evade killing of conventional chemotherapeutic agents. We have recently reported the actin-bundling protein (fascin) as a major regulator of breast cancer metastasis and survival.Methods:Survival of breast cancer patients that received chemotherapy and xenograft tumour model was used to assess the effect of chemotherapy on fascin-positive and -negative breast cancer cells. Molecular and cellular assays were used to gain in-depth understanding of the relationship between fascin and chemoresistance.Results:We showed a significant correlation between fascin expression and shorter survival in breast cancer patients who received chemotherapy. In xenograft experiments, fascin-positive cancer cells displayed significantly more resistance to chemotherapy-mediated apoptotic cell death than fascin-negative counterparts. This increased chemoresistance was at least partially mediated through PI3K/Akt signalling, and was paralleled by increased FAK phosphorylation, enhanced expression of the inhibitor of apoptosis proteins (XIAP and Livin) and suppression of the proapoptotic markers (caspase 9, caspase 3 and PARP).Conclusions:This is the first report to demonstrate fascin involvement in breast cancer chemotherapeutic resistance, supporting the development of fascin-targeting drugs for better treatment of chemoresistance breast cancer.British Journal of Cancer advance online publication 12 August 2014; doi:10.1038/bjc.2014.453 www.bjcancer.com.
    British Journal of Cancer 08/2014; · 4.82 Impact Factor