Article

Aprataxin gene mutations in Tunisian families.

Institut National de Neurologie, Département de Biologie Moléculaire et de Neuropathologie,CNRS/INSERM Université Louis Pasteur, Illkirch, CHU de Strasbourg, France.
Neurology (Impact Factor: 8.3). 10/2004; 63(5):928-9. DOI: 10.1212/01.WNL.0000137044.06573.46
Source: PubMed

ABSTRACT The authors report clinical and genetic study of 13 patients from three unrelated Tunisian families with an early onset cerebellar ataxia associated with oculomotor apraxia. Cerebellar ataxia with oculomotor apraxia 1 (AOA1) represents a clinically heterogeneous disease caused by mutations in the aprataxin gene. Two novel mutations were identified, the complete deletion of the gene, which seems to not correlate with an increased severity of the disease, and a splice mutation on the acceptor splice site of exon 7.

0 Followers
 · 
68 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
    Advances in Experimental Medicine and Biology 01/2014; 825:1-55. DOI:10.1007/978-1-4939-1221-6_1 · 2.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since identification of mutations in the ATM gene leading to ataxia-telangiectasia, enormous efforts have been devoted to discovering the roles this protein plays in DNA repair as well as other cellular functions. Even before the identification of ATM mutations, it was clear that other diseases with different genomic loci had very similar neurological symptoms. There has been significant progress in understanding why cancer and immunodeficiency occur in ataxia-telangiectasia even though many details remain to be determined, but the field is no closer to determining why the nervous system requires ATM and other DNA repair genes. Even though rodent disease models have similar DNA repair abnormalities as the human diseases, they have no consistent, robust neuropathological phenotype making it difficult to understand the neurological underpinnings of disease. Therefore, it may be useful to reassess the neurological and neuropathological characteristics of ataxia-telangiectasia in human patients to look for potential commonalities in DNA repair diseases that result in ataxia. In doing so, it is clear that ataxia-telangiectasia and similar diseases share neurological features other than merely ataxia, such as length-dependent motor and sensory neuropathies, and that the neuroanatomical localization for these symptoms is understood. Cells affected in ataxia-telangiectasia and similar diseases are some of the largest single nucleated cells in the body. In addition, a subset of these diseases also has extrapyramidal movements and oculomotor apraxia. These neurological and neuropathological similarities may indicate a common DNA repair related pathogenesis with very large cell size as a critical risk factor.
    Neurogenetics 07/2014; 15(4). DOI:10.1007/s10048-014-0415-z · 2.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ataxia, although rare, can be a symptom of many debilitating movement disorders. Hereditary ataxias are one subset of this condition and manifest when there is a genetic abnormality involved. Ataxia oculomotor apraxia type 1 (AOA1), an autosomal recessive ataxia, results from a mutation on the aprataxin gene (APTX). We characterized a novel homozygous deletion mutation (IVS4-12delT) on the APTX gene in a 14-year-old male born to consanguineous parents. This case report emphasizes the importance of investigating and increasing awareness of novel genetic mutations in order to help diagnose and further classify hereditary ataxias.
    Annals of Indian Academy of Neurology 04/2013; 16(2):269-71. DOI:10.4103/0972-2327.112495 · 0.51 Impact Factor