Toxicity of azodrin on the morphology and acetylcholinesterase activity of the earthworm Eisenia foetida.

Toxicology Unit, Biology Division, Indian Institute of Chemical Technology, Hyderabad 500-007, India.
Environmental Research (Impact Factor: 3.24). 12/2004; 96(3):323-7. DOI: 10.1016/j.envres.2004.02.014
Source: PubMed

ABSTRACT The acute toxicity of azodrin (monocrotophos, an organophosphorus insecticide) was determined on a soil organism, Eisenia foetida. The median lethal concentrations (LC50) were derived from a 48-h paper contact test and from artificial soil tests. The LC50 of azodrin in the paper contact test was 0.46 +/- 0.1 microg cm(-2) (23 +/- 6 mg L(-1)) and those in the 7- and 14-day artificial soil tests were 171 +/- 21 and 132 +/- 20 mg kg(-1), respectively. The neurotoxic potentiality of azodrin was assessed by using a marker enzyme, acetylcholinesterase (AChE; EC in both in vitro and in vivo experiments. The progressive signs of morphological destruction are correlated with percentage inhibition of AChE in the in vivo experiments. The kinetics of AChE activity in the presence and absence of azodrin indicated that the toxicant is competitive in nature. This study demonstrated that azodrin causes concentration-dependent changes in the morphology and AChE activity of the earthworm E. foetida.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of two widely used insecticides - organophosphate pirimiphos-methyl and pyrethroid deltamethrin - were investigated under laboratory conditions following OECD guidelines using the epigeic earthworm Eisenia andrei as the test organism. The overall aim of this study was to evaluate the effects of these pesticides on molecular biomarkers of earthworm E. andrei using the in vitro, filter paper contact and artificial soil test. In this study for the first time the equivalent concentrations of investigated pesticide applied in different tests were calculated. Although the response of measured molecular biomarkers in different toxicity tests had certain similarities, some distinct differences were also evident. Both pesticides inhibited AChE and CES activities in all three applied toxicity tests; however only in the filter paper test the hormetic effect was recorded. The artificial soil test showed that duration of the exposure significantly changed the effects of the investigated pesticides on CAT and GST activities. Namely, after the initial increase, the prolongation of exposure caused the reduction of the CAT and GST activities. Both pesticides significantly inhibited the efflux pump activity. In the artificial soil test, the significant changes in measured biomarkers after application of doses lower than doses recommended for use in the agriculture indicate that the investigated pesticides could have a harmful effect on earthworms in the context of the realistic environment.
    Chemosphere 10/2012; · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Albendazole (ABZ) is a veterinary drug with a high efficiency against parasite. The aim of this research is to investigate and characterize the response of gene expression in different regions of earthworms Eisenia fetida in relation to ABZ exposure. In this research, the earthworms were exposed to ABZ at 0, 10, 30, 90, and 270mg/kg concentrations for 42 days. Within the initial 14-day exposure, the expression levels of two target genes (mitochondrial large ribosomal subunit (l-rRNA) and heat shock protein (HSP90)) in different regions of earthworms were affected significantly by the different exposure concentrations of ABZ, but the growth rates were similar among the ABZ and control groups. With longer exposure time, growth rates decreased significantly after 28 days of exposure at 90 and 270mg/kg. These results of target genes expression suggest that, at low ABZ concentrations, the middle region of earthworms is more sensitive to ABZ than the anterior and posterior regions. In the middle region, the l-rRNA expression of the ABZ-exposed groups was significantly lower than the control group, with a reduction to 23%, 25% and 31% for 10, 30 and 90mg/kg ABZ concentrations, respectively (P<0.01). In contrast, the HSP90 expression of the ABZ groups (full range of 10 to 270mg/kg) in the middle region increased 4.1-8.7 folds over the control group (P<0.01). In the anterior and posterior regions, the expression of the two target genes at 10mg/kg did not differ significantly among the ABZ and control groups (P>0.05), except for l-rRNA in the posterior region. The characterization and understanding of target genes expression in different regions of earthworms can provide important information on predictive early reading on the pollution of ABZ residue in soils.
    Ecotoxicology and Environmental Safety 01/2013; · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to evaluate the toxicological responses of earthworm (Eisenia fetida) induced by field-contaminated, metal-polluted soils. Biochemical responses and DNA damage of earthworm exposed to two multi-metal-contaminated soils in a steel industry park and a natural reference soil in Zijin Mountain for 2, 7, 14, and 28 days were studied. Results showed that three enzyme activities, including superoxide dismutase (SOD), acetylcholinesterase (AChE), and cellulase, in earthworm in metal-contaminated soils were significantly different from those of the reference soil. Cellulase and AChE were more sensitive than SOD to soil contamination. The Olive tail moment of the comet assay after 2-day exposure increased 56.5 and 552.0 % in two contaminated soils, respectively, compared to the reference soil. Our findings show that cellulase and DNA damage levels can be used as potential biomarkers for exposure of earthworm to metal-polluted soils.
    Environmental Science and Pollution Research 04/2013; · 2.76 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014