Article

Piecewise H infinity: controller design of discrete time fuzzy systems.

School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, 2052 Australia.
IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics) (Impact Factor: 3.24). 03/2004; 34(1):682-6.
Source: PubMed

ABSTRACT This paper presents a new H infinity controller design method for the discrete time fuzzy systems based on the piecewise Lyapunov functions. The basic idea of the proposed approach is to construct the controller for the fuzzy systems in such a way that a discrete time piecewise Lyapunov function can be used to establish the global stability with H infinity-disturbance attenuation performance of the resulting close loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set of linear matrix inequalities (LMIs) that is numerically tractable with commercially available software. Numerical example is given to demonstrate the advantage of the proposed method.

0 Bookmarks
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper studies the problem of dynamic output feedback H <sub>∞</sub> control for nonlinear systems, which are described by Takagi-Sugeno fuzzy parts with measurable premise variables and uncertainty parts. The uncertainties are parameter dependent, unknown, and time varying but bounded. A switching fuzzy dynamic output feedback control scheme is proposed, which depends on the measurable premise variables and the bounds of the unknown parameters of the considered system, where the switching mechanism is introduced to handle the unknown parameters. A two-step linear-matrix-inequality-based optimization procedure is developed to design switching fuzzy H <sub>∞</sub> controllers. An example is given to illustrate the effectiveness of the proposed design method.
    IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics) 05/2010; · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: En este trabajo se revisa el estado del arte sobre estabilidad de sistemas borrosos, poniéndose de manifiesto las dificultades para su análisis, debido a la característica falta de linealidad de los mismos. Se revisan los estudios basados en el criterio del círculo, las técnicas para calcular índices de estabilidad, así como técnicas basadas en aplicación del teorema de estabilidad de Lyapunov, que permite utilizar métodos numéricos de búsqueda de soluciones. Además, se revisan los trabajos de estabilidad mediante el uso del modelo borroso de Takagi-Sugeno (T-S), el enfoque de las Desigualdades Matriciales Lineales (LMI), que ha tenido un interés creciente en los últimos años, así como otra línea de investigación basada en estabilidad energética
    Revista iberoamericana de automática e informática industrial (RIAI), ISSN 1697-7912, Vol. 4, Nº. 2, 2007, pags. 7-25. 04/2007;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper is concerned with stability analysis and H(infinity) decentralized control of discrete-time fuzzy large-scale systems based on piecewise Lyapunov functions. The fuzzy large-scale systems consist of J interconnected discrete-time Takagi-Sugeno (T-S) fuzzy subsystems, and the stability analysis is based on Lyapunov functions that are piecewise quadratic. It is shown that the stability of the discrete-time fuzzy large-scale systems can be established if a piecewise quadratic Lyapunov function can be constructed, and moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. The H(infinity) controllers are also designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions. It is demonstrated via numerical examples that the stability and controller synthesis results based on the piecewise quadratic Lyapunov functions are less conservative than those based on the common quadratic Lyapunov functions.
    IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics: a publication of the IEEE Systems, Man, and Cybernetics Society 11/2008; 38(5):1390-401. · 3.01 Impact Factor