Article

Mesenchymal progenitor cells in the human umbilical cord.

Laboratory of Medical Genetics, Samsung Cheil Hospital & Women's Healthcare Center, College of Medicine, Sungkyunkwan University, 1-19, Mook Jung-Dong, Chung-ku, Seoul, 100-380, South Korea.
Annals of Hematology (Impact Factor: 2.87). 01/2005; 83(12):733-8. DOI: 10.1007/s00277-004-0918-z
Source: PubMed

ABSTRACT Mesenchymal progenitor or stem cells (MPCs) isolated from fetal blood, liver, and bone marrow are a population of multipotential cells that can proliferate and differentiate into multiple mesodermal tissues including bone, cartilage, muscle, ligament, tendon, fat, and stroma. The objective of this study was to isolate and characterize MPCs in the human umbilical cord. The suspensions of endothelial and subendothelial cells in cord vein were collected and cultured in M199 supplemented with 10% fetal bovine serum (FBS). Of 50 umbilical cord samples, 3 had numerous fibroblastoid cells morphologically distinguishable from endothelial cells. Fibroblastic cells displayed lack of expression of vWF, Flk-1, and PECAM-1, indicating the endothelial cell-specific marker. To investigate the differentiation potentials, the cells were cultured in adipogenic or osteogenic medium for 2 weeks. Fibroblast-like cells treated with adipogenic supplementation showed Oil red O-positive staining and expressed adipsin, FABP4, LPL, and PPARgamma2 genes by reverse transcriptase polymerase chain reaction (RT-PCR). In osteogenic differentiation, alkaline phosphatase activity and calcium accumulation were detected. RT-PCR studies determined that Cx43, osteopontin, and Runx2 genes were expressed in the osteogenic cultures. Among three cell lines cultured continuously for passage 10, two had normal karyotypes; however, one retained a karyotype of mos 46,XY[19]/47,XY,+mar[3]. These observations suggest that MPCs are present in human umbilical cord and possess several typical traits of MPCs.

0 Bookmarks
 · 
57 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the condition and potentiality of human umbilical cord blood stem cells (HUCBSC) to differentiate into hepatocytes in vivo or in vitro. In a cell culture study of human umbilical cord blood stem cell (HUCBSC) differentiation, human umbilical cord blood mononuclear cells (HUCBMNC) were separated by density gradient centrifugation. Fibroblast growth factor (FGF) and hepatocyte growth factor (HGF) and the supernatant of fetal liver were added in the inducing groups. Only FGF was added in the control group. The expansion and differentiation of HUCBMNC in each group were observed. Human alpha fetoprotein (AFP) and albumin (ALB) were detected by immunohistochemistry. In the animal experiments, the survival SD rats with acute hepatic injury after carbon tetrachloride (CCL4) injection 48 h were randomly divided into three groups. The rats in group A were treated with human umbilical cord blood serum. The rats in group B were treated with HUCBMNC transplantation. The rats in group C were treated with HUCBMNC transplantation followed by intraperitoneal cyclophosphamide for 7 d. The rats were killed at different time points after the treatment and the liver tissue was histopathologically studied and human AFP and ALB detected by immunohistochemistry. The human X inactive-specific transcript gene fragment in the liver tissue was amplified by PCR to find human DNA. The results of cell culture showed that adherent cells were stained negative for AFP or ALB in control group. However, the adherent cells in the inducing groups stained positive for AFP or ALB. The result of animal experiment showed that no human AFP or ALB positive cells present in the liver tissue of group A (control group). However, many human AFP or ALB positive cells were scattered around sinus hepaticus and the central veins of hepatic lobules and in the portal area in group B and group C after one month. The fragment of human X chromagene could be detected in the liver tissue of groups B and C, but not in group A. Under certain conditions HUCBSC can differentiate into liver cells in vivo and in vitro.
    World Journal of Gastroenterology 08/2006; 12(25):4014-9. · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human umbilical cord blood cells (HUCBCs) have been employed as a restorative treatment for experimental stroke. In this study, we investigated whether transplantation of sub-therapeutic doses of HUCBCs and Simvastatin enhances cerebral vascular remodeling after stroke. Adult male Wistar rats (n=34) were subjected to transient middle cerebral artery occlusion (MCAo) and treated with: phosphate-buffered solution (PBS, gavaged daily for 7days); Simvastatin (0.5mg/kg, gavaged daily for 7days); HUCBCs (1×10(6), injected once via tail vein); and combination Simvasatin with HUCBCs, starting at 24h after MCAo. There was no significant difference between Simvastatin- or HUCBC-monotherapy and MCAo-alone group. Combination treatment 24h post-stroke significantly increased the perimeter of von Willebrand factor (vWF)-positive vessels, the diameter and density of alpha smooth muscle actin (αSMA)-positive arteries, and the percentage of 5-bromodeoxyuridine (BrdU)-positive endothelial cells (ECs) in the ischemic boundary zone (IBZ) compared with MCAo-alone or HUCBC-monotherapy 14days after MCAo (p<0.05, n=8/group); Combination treatment significantly increased the densities of vWF-vessels and αSMA-arteries as well as the densities of BrdU-ECs and BrdU-positive smooth muscle cells (SMCs) in vascular walls in the IBZ compared with Simvastatin-monotherapy. Moreover, the increased BrdU-ECs and BrdU-SMCs were significantly correlated with neurological functional outcome 14days after MCAo. Combination treatment also significantly increased the expression of Angiopoietin-1 (Ang1), Tie2 and Occludin in the IBZ (p<0.05, n=8/group). The in vitro experiments showed that combination treatment and Ang1 significantly increased capillary-like tube formation and arterial cell migration; anti-Ang1 significantly reduced combination treatment-induced tube-formation and artery cell migration (p<0.05, n=6/group). These findings indicated that a combination of sub-therapeutic doses of Simvastatin and HUCBCs treatment of stroke increases Ang1/Tie2 and Occludin expression in the ischemic brain, amplifies endogenous angiogenesis and arteriogenesis, and enhances vascular remodeling which in concert may contribute to functional outcome after stroke.
    Neuroscience 10/2012; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human umbilical cord (UC) is a promising source of mesenchymal stem cells (MSCs). Apart from their prominent advantages, such as a painless collection procedure and faster self-renewal, UC-MSCs have shown the ability to differentiate into three germ layers, to accumulate in damaged tissue or inflamed regions, to promote tissue repair, and to modulate immune response. There are diverse protocols and culture methods for the isolation of MSCs from the various compartments of UC, such as Wharton's jelly, vein, arteries, UC lining and subamnion and perivascular regions. In this review, we give a brief introduction to various compartments of UC as a source of MSCs and emphasize the potential clinical utility of UC-MSCs for regenerative medicine and immunotherapy.
    World journal of stem cells. 04/2014; 6(2):195-202.