A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells.

Department of Computational, Analytical and Structural Sciences, GlaxoSmithKline, Inc., Research Triangle Park, North Carolina 27709, USA.
Cancer Research (Impact Factor: 8.65). 10/2004; 64(18):6652-9. DOI: 10.1158/0008-5472.CAN-04-1168
Source: PubMed

ABSTRACT GW572016 (Lapatinib) is a tyrosine kinase inhibitor in clinical development for cancer that is a potent dual inhibitor of epidermal growth factor receptor (EGFR, ErbB-1) and ErbB-2. We determined the crystal structure of EGFR bound to GW572016. The compound is bound to an inactive-like conformation of EGFR that is very different from the active-like structure bound by the selective EGFR inhibitor OSI-774 (Tarceva) described previously. Surprisingly, we found that GW572016 has a very slow off-rate from the purified intracellular domains of EGFR and ErbB-2 compared with OSI-774 and another EGFR selective inhibitor, ZD-1839 (Iressa). Treatment of tumor cells with these inhibitors results in down-regulation of receptor tyrosine phosphorylation. We evaluated the duration of the drug effect after washing away free compound and found that the rate of recovery of receptor phosphorylation in the tumor cells reflected the inhibitor off-rate from the purified intracellular domain. The slow off-rate of GW572016 correlates with a prolonged down-regulation of receptor tyrosine phosphorylation in tumor cells. The differences in the off-rates of these drugs and the ability of GW572016 to inhibit ErbB-2 can be explained by the enzyme-inhibitor structures.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human epidermal growth factor receptor-2 (HER2) is overexpressed in up to 30% of breast cancers; HER2 overexpression is indicative of poor prognosis. Trastuzumab, an anti-HER2 monoclonal antibody, has led to improved outcomes in patients with HER2-positive breast cancer, including improved overall survival in adjuvant and first-line settings. However, a large proportion of patients with breast cancer have intrinsic resistance to HER2-targeted therapies, and nearly all become resistant to therapy after initial response. Elucidation of underlying mechanisms contributing to HER2 resistance has led to development of novel therapeutic strategies, including those targeting HER2 and downstream pathways, heat shock protein 90, telomerase, and vascular endothelial growth factor inhibitors. Numerous clinical trials are ongoing or completed, including phase 3 data for the mammalian target of rapamycin inhibitor everolimus in patients with HER2-resistant breast cancer. This review considers the molecular mechanisms associated with HER2 resistance and evaluates the evidence for use of evolving strategies in patients with HER2-resistant breast cancer.
    Breast cancer : basic and clinical research. 01/2014; 8:109-18.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human epidermal growth factor receptor 2 (HER2)/ErbB2 is a receptor tyrosine kinase belonging to the EGFR/ErbB family and is overexpressed in 20-30% of human breast cancers. Since there is a growing effort to develop pharmacological inhibitors of the HER2 kinase for the treatment of breast cancer, it is clinically valuable to rationalize how specific mutations impact the molecular mechanism of receptor activation. Although several crystal structures of the ErbB kinases have been solved, the precise mechanism of HER2 activation remains unknown, and it has been suggested that HER2 is unique in its requirement for phosphorylation of Y877, a key tyrosine residue located in the activation loop (A-loop). In our studies, discussed here, we have investigated the mechanisms that are important in HER2 kinase domain regulation and compared them with the other ErbB family members, namely EGFR and ErbB4, to determine the molecular basis for HER2's unique mode of activation. We apply computational simulation techniques at the atomic level and at the electronic structure (quantum mechanical) level to elucidate details of the mechanisms governing the kinase domains of these ErbB members. Through analysis of our simulation results, we have discovered potential regulatory mechanisms common to EGFR, HER2, and ErbB4, including a tight coupling between the A-loop and catalytic loop that may contribute to alignment of residues required for catalysis in the active kinase. We further postulate an autoinhibitory mechanism whereby the inactive kinase is stabilized through sequestration of catalytic residues. In HER2, we also predict a role for phosphorylated Y877 in bridging a network of hydrogen bonds that fasten the A-loop in its active conformation, suggesting that HER2 may be unique among the ErbB members in requiring A-loop tyrosine phosphorylation for functionality. In EGFR, HER2, and ErbB4, we discuss the possible effects of activating mutations. Delineation of the activation mechanism of HER2 in the context of the other ErbB members is crucial for understanding how the activated kinase might interact with downstream molecules and couple to signaling cascades that promote cancer. Our comparative analysis furthers insight into the mechanics of activation of the HER2 kinase and enables us to predict the effect of an identified insertion mutation on HER2 activation. Further understanding of the mechanism of HER2 kinase activation at the atomic scale and how it couples to downstream signaling at the cellular scale will elucidate predictive molecular phenotypes that may indicate likelihood of response to specific therapies for HER2-mediated cancers.
    Cancer research journal. 01/2011; 4(4):1-35.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EGF and its receptor EGFR serve as a paradigm for signaling in cell, molecular and tumor biology. EGFR inhibitors, drugs targeting the intracellular kinase activity and antibodies targeting the extracellular ligand binding, are used to treat breast, lung, colon and other cancers. Nominally affecting the same target, inhibitors have different effects, suggesting that use of inhibitor combinations may provide beneficial in cancer treatment. To explore the specific and the common transcriptional effects of EGFR inhibitors, we present metaanalysis of 20 individual studies comprising 346 microarrays. We identified specific gene subsets regulated by kinase inhibitors, those regulated using antibodies and by suppressing EGFR expression using miR-7. Unreported before, the inhibitors prominently induce lysosome components. All inhibitors rely on related sets of transcription factors and protein kinases, both for transcriptional induction and suppression. However, we find that Gefitinib suppresses apoptosis inhibitors, while inducing cell-cycle inhibitors; conversely, Erlotinib suppresses cell-cycle and cell migration genes, while inducing proapoptotic genes. EGFR-targeting antibodies specifically suppress cell motility, developmental and differentiation processes, while inducing the contractile apparatus. miR-7, distinctively, suppresses cell-cycle genes, while inducing transcription machinery. These metaanalysis results suggest that different inhibitors have overlapping but quite distinct effects in target cells. Judicial use of EGFR-targeting combinations, i.e., simultaneous use of antibodies and multiple kinase inhibitors, may provide more effective cancer treatments with fewer side-effects and avoid development of resistance. We expect, moreover, that specific drug combination treatments can be fine-tuned to achieve specific, personalized results.
    PLoS ONE 01/2014; 9(9):e102466. · 3.53 Impact Factor


Available from