CD4 help and tumor immunity: beyond the activation of cytotoxic T lymphocytes.

Annals of Surgical Oncology (Impact Factor: 3.94). 11/2004; 11(10):881-2. DOI: 10.1245/ASO.2004.08.911
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) has been reported to have both tumor-promoting and tumor-suppressing roles in tumorigenesis. However, the role of SHP-2 in tumor immunity remains unclear. Here we observed progressively lower levels of phosphorylated SHP-2 in tumor-associated CD4(+) T cells during melanoma development in a murine model. Similarly, the levels of phosphorylated SHP-2 in the CD4(+) T cells of human melanoma specimens revealed a decrease paralleling cancer development. The CD4(+) T cell-specific deletion of SHP-2 promoted melanoma metastasis in mice. Furthermore, SHP-2 deficiency in CD4(+) T cells resulted in the increased release of inflammatory cytokines, especially IL-6, and the enhanced accumulation of tumor-promoting myeloid-derived suppressor cells (MDSCs) in tumor-bearing mice. An IL-6-neutralizing antibody reduced MDSC accumulation and inhibited tumor growth in CD4(+) T-cell-specific SHP-2-knockout mice. Our results suggest that SHP-2 in CD4(+) T cells plays an important role in preventing melanoma progression and metastasis.
    Scientific Reports 10/2013; 3:2845. DOI:10.1038/srep02845 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) plays a key role in tumor angiogenesis and metastasis in tumors. VEGF/bFGF complex peptide (VBP3) was designed to elicit the body to produce both high titer anti-VEGF and anti-bFGF antibodies to inhibit tumor angiogenesis and tumor growth. BALB/c mice were immunized with the VEGF/bFGF complex peptide, and the immune responses were assayed. Splenocytes were separated from the immunized mice and the CD4, CD8 T cells and IFN-γ were assayed by Flow cytometry. The results showed that the VBP3 could effectively stimulate immune response in mice and resulted in the increase of CD4 and CD8 T cells. CD4+ T cells and CD8+ T cells were increased from 10.78 to 15.13 and 6.82 to 11.58 % respectively. Polyclonal antibodies purified from the VBP3 immunized mice showed good anti-proliferation function to lung cancer cells, and resulted in the decrease of phosphroylation level of Akt and Erk assayed by the Western-blot. Transwell assays showed that the migration of HUVEC cells was inhibited by the antibodies. The results revealed that the VBP3 have good immunogenicity and may be used as a vaccine for tumor therapy.
    International Journal of Peptide Research and Therapeutics 12/2014; 20(4). DOI:10.1007/s10989-014-9414-z · 0.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peptide-based vaccines, one of several anti-tumor immunization strategies currently under investigation, can elicit both MHC Class I-restricted (CD8(+)) and Class II-restricted (CD4(+)) responses. However, the need to identify specific T-cell epitopes in the context of MHC alleles has hampered the application of this approach. We have tested overlapping synthetic peptides (OSP) representing a tumor antigen as a novel approach that bypasses the need for epitope mapping, since OSP contain all possible epitopes for both CD8(+) and CD4(+) T cells. Here we report that vaccination of inbred and outbred mice with OSP representing tumor protein D52 (TPD52-OSP), a potential tumor antigen target for immunotherapy against breast, prostate, and ovarian cancer, was safe and induced specific CD8(+) and CD4(+) T-cell responses, as demonstrated by development of specific cytotoxic T cell (CTL) activity, proliferative responses, interferon (IFN)-gamma production and CD107a/b expression in all mice tested. In addition, TPD52-OSP-vaccinated BALB/c mice were challenged with TS/A breast carcinoma cells expressing endogenous TPD52; significant survival benefits were noted in vaccine recipients compared to unvaccinated controls (p<0.001). Our proof-of-concept data demonstrate the safety and efficacy of peptide library-based cancer vaccines that obviates the need to identify epitopes or MHC backgrounds of the vaccinees. We show that an OSP vaccination approach can assist in the disruption of self-tolerance and conclude that our approach may hold promise for immunoprevention of early-stage cancers in a general population.
    Vaccine 02/2009; 27(12):1825-33. DOI:10.1016/j.vaccine.2009.01.089 · 3.49 Impact Factor